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Abstract

Semantic memory encompasses one’s knowledge about the world. Distributional semantic models,
which construct vector spaces with embedded words, are a proposed framework for understanding the
representational structure of human semantic knowledge. Unlike some classic semantic models, dis-
tributional semantic models lack a mechanism for specifying the properties of concepts, which raises
questions regarding their utility for a general theory of semantic knowledge. Here, we develop a com-
putational model of a binary semantic classification task, in which participants judged target words for
the referent’s size or animacy. We created a family of models, evaluating multiple distributional seman-
tic models, and mechanisms for performing the classification. The most successful model constructed
two composite representations for each extreme of the decision axis (e.g., one averaging together rep-
resentations of characteristically big things and another of characteristically small things). Next, the
target item was compared to each composite representation, allowing the model to classify more than
1,500 words with human-range performance and to predict response times. We propose that when mak-
ing a decision on a binary semantic classification task, humans use task prompts to retrieve instances
representative of the extremes on that semantic dimension and compare the probe to those instances.
This proposal is consistent with the principles of the instance theory of semantic memory.
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1. Introduction

Human semantic memory is complex, encompassing one’s knowledge about the world and
the things in it. Characterizing the computations underlying the access and manipulation of
semantic memory has been a central question in the field of cognitive science for decades
(Barsalou, 2008; Binder, Desai, Graves, & Conant, 2009; Cree & McRae, 2003; Collins &
Loftus, 1975; Collins & Quillian, 1969; Fodor, 1998; Jackendoff, 1992; Lambon Ralph &
Patterson, 2008; Laurence & Margolis, 1999; Mahon & Caramazza, 2003; McRae, De Sa, &
Seidenberg, 1997; Osgood, 1952; Saffran & Schwartz, 1994; Tulving, 1972;). Technological
advances in the late 1990s offered a new powerful computational method of quantifying
the meaning of words through ample text corpus data, creating a new class of distributional
semantic models (DSMs). DSMs, such as latent semantic analysis (LSA; Landauer &
Dumais, 1997), word2vec (Mikolov, Chen, Corrado, & Dean, 2013), and Global Vectors
(GloVe; Pennington, Socher, & Manning, 2014) conceptualize semantic representations as
vectors residing in a high-dimensional vector space. These models are based in part on the
assumption that the meaning of a word is reflected in the pattern of its usage, namely, that
words with similar or related meanings tend to occur in similar contexts (Harris, 1954; Firth,
1957). According to this idea, words like virus, mask, and vaccine tend to occur in proximity
to each other (e.g., in the same sentence, paragraph, or document) because the meanings
denoted by the words are semantically associated. In contrast, the words virus and flowers do
not tend to occur in similar contexts, suggesting that the meanings associated with the words
have little to no semantic association or similarity.

DSMs have been incorporated into a variety of cognitive models of semantic memory, pre-
dicting human performance on a variety of tasks including the Test of English as a Foreign
Language (TOEFL) synonym task (Landauer & Dumais, 1997), word analogies (Mikolov
et al., 2013), concept naming (Pennington et al., 2014), free recall (Morton & Polyn, 2016),
feature generation (Cutler, Duff, & Polyn, 2019), the remote associates test (Smith, Huber,
& Vul, 2013), the preferential decision-making task (Bhatia, 2019; Bhatia, Richie, & Zou,
2019), semantic fluency (Hills, Jones, & Todd, 2012), and binary semantic classification
(Grand, Blank, Pereira, & Fedorenko, 2022). To model behavior in any one of these tasks, the
semantic representational structure captured by the DSMs must be integrated with cognitive
mechanisms that make use of it. For example, on the TOEFL synonyms task, participants are
presented with a target word and several choices. The participant’s task is to identify the syn-
onym among the alternatives. In this example, the model’s cognitive machinery is relatively
simple—the algorithm calculates the cosine similarity of the target word to each choice word
and picks the word with the greatest similarity to the target among the alternatives (Landauer
& Dumais, 1997).

Despite the success of DSMs, challenges arise in broadly incorporating them into cogni-
tive models of semantic tasks. While many of the tasks considered above involve evaluating
words in terms of their similarity, problems arise with tasks involving the evaluation of spe-
cific properties of the words in question, since the dimensions of the semantic space are not
necessarily meaningful. In other words, the proximity of the words within the representational
space indicates semantic relatedness but not the nature of the relation (see Hill et al., 2015,
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for a deeper exploration of the distinction between relatedness and similarity). For example,
many DSMs would perform well on identifying the oddball among the words flower, garden,
and vehicle. However, it is unclear how they could identify which properties of a vehicle make
it the oddball. These limitations are not true of all models of semantic memory. For example,
the graph-theoretic semantic models of Collins, Quillian, and Loftus (Collins & Loftus, 1975;
Collins & Quillian, 1969) overcome this issue by incorporating labeled links that specify the
relationship between the properties of concepts. For example, the node canary is linked to
other nodes animal, yellow, beak, and fly by the respective links isa, is, hasa, and can. Sim-
ilarly, Rumelhart, McClelland, and the Parallel Distributed Processing (PDP) group (1986)
developed connectionist models of semantic knowledge that are explicitly trained to store
and retrieve item properties, for example, if bird and hasa are activated, beak is retrieved
(McClelland & Rogers, 2003). Finally, Smith et al.’s (1974) featural model specifies that
concepts have an associated list of features that can be queried to determine properties of
the concept. While these classic models offer information about the properties of items, and
the relationships between concepts, these relations have been experimenter coded, and we
are unaware of any current technology that can generally automate this process. DSMs, on
the other hand, offer a substantial advantage in terms of their scale (e.g., millions of words
in word2vec vs. hundreds of concepts in a norming study by McRae, Cree, Seidenberg, &
McNorgan, 2005), but lack specificity regarding the nature of the relations between concepts.

In a recent study, Grand et al. (2022) addressed this problem. Using a method similar to
Osgood’s semantic differential technique (Osgood, 1952; Osgood et al., 1957), Grand et al.
(2022) collected human ratings evaluating words in terms of a variety of semantic dimensions
(e.g., size, danger, gender, intelligence). For example, to evaluate the target word elephant on
the size dimension, the words small and large were linked to the extremes of a 5-point scale,
and the participant selected which number best went with the target word. They proposed
a computational model which used distributional semantic representations to simulate these
simple binary decisions about the characteristics of real-world objects on the semantic dimen-
sions examined with the human ratings. Their model uses an average of three synonymous
adjective labels assigned to each of the two extremes of the semantic dimension to construct
a semantic axis in the representational space of the DSM. In other words, to make a size judg-
ment, the vector representations of {large, huge, big} and {small, little, tiny} are retrieved
and averaged together to create two semantic composite representations. By subtracting one
of these semantic composites from the other, a difference vector is created, and this can be
treated as a semantic axis in the representational space. A judgment is made by projecting a
given word vector onto the semantic axis and calculating which extreme it is closer to (Fig. 1).
We refer to this as an adjective-composite model of binary semantic classification. Grand et al.
(2022) demonstrated the utility and flexibility of this semantic projection model, which was
able to capture approximately 0.37 of variability in human ratings on a set of semantic classi-
fication tasks.

Overall, Grand et al. (2022) established that detailed, context-dependent conceptual knowl-
edge can be flexibly extracted from the representational space of a DSM. They demonstrated
the cognitive utility of the adjective-composite model but did not specifically propose it as a
cognitive model of human performance in the binary semantic classification task. Rather, they
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Fig. 1. Schematic depiction of a semantic projection. Each semantic model in this paper constructs a semantic
axis as a difference vector (dashed line) by subtracting one semantic composite from another. Here we depict a
semantic axis for a size judgment, using the item-composite semantic construction procedure. The two extremes of
the big–small axis are computed as averages of the words in the dataset unanimously judged as big or small by all
participants. The position of a projected word on the semantic axis is calculated with a dot product operation. The
resulting value (a dot-product score) is used as evidence to determine the predicted probability for each response
(big or small).

established that word embedding is constructed based on co-occurrence statistics that contain
rich information capable of guiding flexible semantic classification judgments.

In the current work, we evaluate the adjective-composite model as a potential cognitive
mechanism involved in binary semantic classification and compare it with an alternative item-
composite model. This alternative model proposes that while performing a binary semantic
classification task, participants use each adjective label of the judgment (i.e., big and small)
to retrieve a set of items representative of each extreme. In other words, the cognitive system
retrieves a set of vectors corresponding to big things and another set of vectors of small things.
Each of these sets is blended to create a composite semantic representation of that extreme of
the semantic decision axis (see Fig. 1). As with the adjective-composite model, the judgment
is made by projecting a given word vector onto this semantic decision axis and calculating
which extreme it is closer to.

In order to compare these two models, we present a likelihood-based computational mod-
eling framework for the binary semantic classification task. The framework allows us to con-
trast different semantic projection mechanisms in terms of their ability to predict human task
performance. The framework consists of three parts: a DSM to define the representational
space (word2vec or GloVe), a semantic evaluation algorithm (adjective-composite or item-
composite), and a decision mechanism (a logistic decision rule or linear ballistic accumula-
tors [LBA]). We examine two DSMs to establish that the simulation results are robust and
are not dependent on the exact distributional model used. Each DSM constructs a set of word
vectors from word co-occurrence statistics in a large natural language corpus. The word2vec
model uses a neural network algorithm to construct its vectors (Mikolov et al., 2013), and the
GloVe model extracts the vectors more directly from the global corpus statistics (Pennington
et al., 2014). Both decision mechanisms allow us to evaluate model performance in terms
of response probabilities, and the LBA model additionally allows us to examine response
latencies. These models are evaluated with respect to how well they can predict human
performance in a large dataset with two semantic classification tasks (size and animacy),
42 participants, 1,650 unique target words, and 47,520 unique responses. Results from a sec-
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ond large dataset are presented in the Supporting Information and are consistent with all of
the results presented in the main paper.

The cognitive mechanisms proposed for the semantic evaluation algorithms can be
described in terms of prominent instance-theoretic cognitive models (Jamieson, Avery, Johns,
& Jones, 2018). The judgment labels associated with the classification task (i.e., big, small)
can be thought of as retrieval cues that prompt the retrieval of semantic representations used
to guide task performance. The Grand et al. mechanism retrieves composites of the adjective
labels of the decision axes, while our novel mechanism retrieves composites of the items asso-
ciated with those labels. This is reminiscent of the memory retrieval mechanisms proposed in
Hintzman’s seminal work with MINERVA 2 (Hintzman, 1984, 1986, 1988), in which a mem-
ory store composed of many instance-based traces of past experience can be flexibly probed to
reactivate composite representations. Such machinery was used to great effect in the recently
proposed instance theory of semantic memory (ITS; Jamieson et al., 2018), which treats mul-
tiple instances of a word’s usage in natural language as independent traces in memory. This
allows ITS to, among other things, interpret homonyms correctly by flexibly constructing a
representation of the word’s meaning on the basis of the word’s current context.

The novel item-composite semantic mechanism retrieves representative members of a given
judgment class (i.e., big things) on the basis of the properties of those items. We note that the
representational structure of a DSM does not support direct targeting of vectors on the basis
of specific properties. As such, we take inspiration from the property-based semantic models
described above and consider the possibility that a secondary system allows the participant
to directly target item representations known to possess that characteristic. This allows the
model to retrieve big things, small things, living things, and non-living things directly when it
constructs its composite item representations, and then to evaluate new items in terms of their
similarity to these composites. We demonstrate that these item composites allow the model to
successfully predict performance for many items that are not part of the composite and that
the model is successful even when only a few items are used to construct each composite.
In the discussion, we revisit the question of whether a secondary property-knowledge sys-
tem is strictly necessary, or whether a modified DSM could potentially account for human
performance.

2. Methods

The behavioral data, modeling scripts, and supplemental materials are available on the
project’s associated OSF page: https://osf.io/mwvx3/

2.1. Behavioral data

The data used to create and evaluate the computational models were collected for a study
described in Polyn, Norman, and Kahana (2009). We provide relevant methodological details
here, and the original paper may be consulted for additional detail. Forty-two individuals
(28 female, 14 male) from the University of Pennsylvania community received payment in
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Fig. 2. Schematic representation of the binary semantic classification task. Target words were presented one at a
time underneath a task cue, and participants indicated their response via keypress. (See the text for details.)

accordance with the University’s IRB guidelines (for more demographic information, see
Polyn et al., 2009). Participants were presented with a series of target words one at a time
along with a task cue on a computer screen (Fig. 2). On size trials, participants indicated
whether the referent was big or small (compared to a shoebox) with a keypress. On animacy
trials, participants indicated whether the referent was living or nonliving with a keypress.
During the initial instructions, participants were told that for some words there would not be
an unambiguous correct answer and that they should respond according to their first reaction
to the word. For the size task, the word dog was given as an example: A small dog could fit
into a shoebox, but a large dog could not. For the animacy task, the word dinosaur was given
as an example. A fossilized dinosaur would be nonliving, but a dinosaur from Jurassic Park
would be living.

Each target word was presented in the middle of the screen for 3 s. If the participant did
not make a response within 3 s, a warning message was displayed, and they advanced to the
next trial automatically. Each set of 24 target words was followed by a 90-s free-recall period
which is not examined here. The words were presented in two experimental conditions: task
shift and no shift. In the no shift condition, the 24 target words were all associated with the
same task (e.g., size or animacy). In the task shift condition, participants alternated judging
the target words on either their size or animacy. Target words were drawn pseudorandomly
from a word pool of 1,650 unique words. Each participant only saw a given word once,
and the words were chosen such that no two words in a set of 24 were highly semantically
related (this was done for the benefit of the free-recall task, which is not examined here). Each
participant completed four experimental sessions, each with 12 sets of 24 target words, for
a total of 1,152 word judgment trials. The final dataset contained 47,520 unique responses
(after excluding missed trials).
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A preliminary analysis of the binary semantic classification data was used to identify a
set of representative words for each of the four response categories (big, small, living, and
nonliving). For each of the 1,650 words, we calculated two proportions: one indicating the
outcome of all big versus small responses for that word and the other indicating the outcome
of all living versus nonliving responses for that word. Each proportion was an average across
all participants who saw that word, but we note that a given participant would only see a
given word in the context of one of the two judgment tasks. These proportions were used to
identify words unanimously judged the same way by every participant. These unanimously
judged words are treated as representative of that response category and are used to construct
the item composite representations in the item-composite model.

The number of unanimous items for each of the four semantic response categories var-
ied somewhat: big (n = 402, 24% of all unique words), small (n = 222, 13%), living (n =
203, 12%), and nonliving (n = 569, 34%). This variability did not seem to systematically
affect model performance in any obvious way. This analysis yielded a set of representative
unanimous words (624 words for big/small, 772 words for living/nonliving) that were used to
construct the item-composite model, as described below. The non-unanimous words (1,026
words for big/small, 878 words for living/nonliving) were used to evaluate the performance
of the model, as described below. The full list of unambiguous words used in the construction
of the composite semantic axis is provided in the Appendix.

2.2. Modeling

We created a likelihood-based modeling framework to simulate and predict human perfor-
mance on the binary semantic classification task. Each individual model was defined in terms
of the following subcomponents: a DSM that was used to retrieve semantic vectors (GloVe
or word2vec); a semantic evaluation model that was used to produce an evidence estimate
for each choice alternative (single-adjective, adjective-composite, or item-composite); and a
decision model that was used to convert the evidence into a decision likelihood for each choice
alternative, and for the second decision model calculate response latency likelihood (logistic
or LBA). This yielded a family of 12 models, which were evaluated against each other.

2.2.1. Distributional semantic models
We used two different word embeddings (word2vec and GloVe) for the semantic vec-

tors for the target words and adjective labels. For word2vec, we used the Continuous Skip-
gram version (Mikolov et al., 2013), trained on the English CoNLL17 corpus (Conference
on Computational Natural Language Learning, English language subcategory, approximately
9 billion tokens; Zeman et al., 2017), producing 100-dimensional vectors. For GloVe, we used
a version trained on a combination of Wikipedia 2014 and Giga-word 5 (6 billion tokens),
producing 300-dimensional vectors (Pennington et al., 2014).

2.2.2. Semantic evaluation algorithm
Three semantic evaluation algorithms were created to calculate evidence (referred to here

as dot-product scores) for each choice alternative. Each evaluation algorithm constructs a
decision axis in the semantic space for each judgment task (size or animacy). To do this, the
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algorithm selects one or more representational vectors for each extreme of the continuum.
These vectors are used to construct the decision axis as described below. In each case, a
difference vector is constructed by subtracting the vectors associated with one extreme of the
semantic axis from those associated with the other extreme. This difference vector is then
used as the semantic axis against which words are judged (as described below).

The single-adjective model used a difference vector that was constructed by subtracting the
vector for the adjective label small from the vector for big for the size trials and subtracting
inanimate from animate for the animacy trials. Following the method of Grand et al. (2022),
the adjective-composite model used a difference vector that was constructed by taking the
difference between the two averages of two or three synonyms, that is, the difference of {huge,
big, large} and {small, little, tiny} for the size trials, and the difference of {animate, living}
and {inanimate, nonliving} for the animacy trials. Finally, for the item-composite model, we
took the full set of vectors for the representative words (as described in Section 2.1) for
each extreme of the semantic axis and averaged them together to make two item-composite
representations (i.e., a big composite, and a small composite). The difference vector was
constructed by subtracting one of these item-composite representations from the other.

Because the item-composite model is constructed using unanimously judged words repre-
sentative of each semantic category, these unanimous words were excluded from our evalua-
tion of the model. The exclusion of the unanimously judged words from model evaluation has
a secondary benefit: The remaining words, by definition, show more variability in responses
and as such provide a stronger test of the model’s ability to capture the responses associated
with potentially ambiguous words.

To derive the evidence for each individual trial, we calculated the dot product between the
semantic vector for the target word and the difference vector resulting in one value, which
we refer to as a dot-product score. It is important to note that the difference vector was only
created when evaluating the logistic decision model, not the LBA model. The LBA model
requires two competing accumulators for each response alternative. Whereas the logistic deci-
sion model produces a single evidence value by combining the two semantic composites into
a single semantic decision axis, the LBA model uses the same semantic composites but does
not combine them. Rather, it calculates a separate evidence score for each extreme of the clas-
sification by calculating the dot product of the target word representation with that extreme’s
semantic composite. Each of these evidence scores is used to drive one of the accumulators
(as depicted schematically in Fig. 3).

2.2.3. Decision models
The two decision models—logistic transformation and LBA—convert evidence values into

a decision likelihood for each choice alternative.
Logistic transformation. In the logistic version of the decision model, we generated the

predicted responses for a given word using the logistic function. The probability for a given
response was calculated using the logistic function using the following equation:

f (x) = 1

1 + e−k(x)
,
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Fig. 3. Two-choice version of the LBA. The left panel shows the evidence for Response A, and the right panel
shows the evidence for Response B. Starting values k are randomly drawn from a uniform random distribution. The
drift rate d is an additive combination of evidence (calculated for the target word on that trial) and noise (drawn
from a random normal distribution with standard deviation s). A response is made when the first accumulator
reaches the threshold b (adapted from Brown & Heathcote, 2008).

where e is the natural logarithm base and x is the evidence (dot-product score) for a given
target word. The free parameter k controls the steepness of the logistic curve.

Linear ballistic accumulator. In addition to the logistic decision model, we implemented
an LBA model (Brown & Heathcote, 2008), which allowed us to evaluate model performance
not only in terms of the predicted responses but also response latencies. While the logistic
decision model simply produces a probability for each response option, LBA creates a prob-
ability distribution across the set of possible response latencies. LBA is a simple model of
decision and response time that assumes multiple independent accumulators racing towards
a certain decision threshold in a linear and deterministic manner until the decision is made.
Across-trial variability in response latencies arises from noise added to the starting point of
the accumulation process and from noise affecting that trial’s drift rate. Each evidence accu-
mulator begins with a certain amount of evidence reflected as a starting point k. Accumulated
evidence increases at a speed determined by the drift rate d until it reaches the response
threshold b (Fig. 3). The first accumulator to reach the threshold determines the response and
the time to reach the threshold (the response latency) is calculated as (b − k)/d.

2.3. Model evaluation

We evaluated the fitness of each model variant using a maximum likelihood estimation
technique. The probabilistic nature of the model allows it to predict the likelihood of each
semantic classification response on a trial-by-trial basis, on the basis of the identity of the
target work, and the identity of the classification task. To the extent that a given model tends
to assign a higher probability to the observed response, that model will perform better in the
model comparison analyses described below.

2.3.1. Maximum likelihood estimation
For both the logistic decision model and LBA, we calculated the likelihood of each model

given the observed data by summing the log-transformed probability values for the model’s
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trial-level predictions (this is equivalent to taking the product of the probability values associ-
ated with these trials). Each model produces a probability for the observed response on a given
trial. The overall probability of a given dataset is the product of the estimated probabilities of
each of these trial events. This overall probability was log-transformed into a log-likelihood
value for model comparison statistics. We used the log-likelihood value to calculate Akaike
information criterion (AIC) scores using the finite-sample correction algorithm described by
Wagenmakers and Farrell (2004). These AIC scores were converted into weighted Akaike’s
information criterion (wAIC) scores (again following Wagenmakers and Farrell, 2004) to
evaluate the fitness of multiple models relative to each other using the formula

wi (AIC) = exp
{− 1

2 �i (AIC)
}

∑K
k=1 exp

{− 1
2�k (AIC)

} ,

where �i(AIC) is the difference in AIC scores between each candidate model and the best
candidate model. These Akaike weights wi (AIC) sum to 1, with each weight indicating the
conditional probability that the corresponding model Mi is the best model given the data and
the set of candidate models (Wagenmakers & Farrell, 2004).

We additionally evaluated each model using a linear correlation analysis and a pairwise
order consistency analysis. Grand et al. (2022) reported these analyses but not AIC, as their
framework did not explicitly incorporate a decision model to produce response probabilities.

2.3.2. Linear correlation
For each word in the dataset not used in the construction of the item-composite vector

(the restricted dataset), we first calculated the evidence score and the mean judgment value
separately for each task (with a mean of 0 indicating all participants judged the word as small
or inanimate, and 1 indicating all participants judged it as big or animate) averaged across the
participants. Then we calculated a Pearson correlation between the evidence scores and mean
judgment values for the words in the restricted dataset.

2.3.3. Pairwise order consistency
Following the method of Grand et al. (2022), we calculated the proportion of two-word

combinations in the restricted dataset for which the difference between the human judg-
ment and the dot-product scores was in the same direction, out of all possible two-word
combinations. For example, if the word elephant was judged on average as larger than
the word mouse and the dot-product score for elephant was larger than for mouse, then the
elephant–mouse word pair would get a score of 1 and 0 otherwise. We repeated this procedure
for each possible two-word combination, resulting in 1,6502 possible word combinations
and scores (0 and 1). The final score is the proportion of 1s across all possible two-word
combinations.
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E. Diachek, S. Brown-Schmidt, S. M. Polyn / Cognitive Science 47 (2023) 11 of 36

Fig. 4. Log-likelihood values for the logistic decision model combined across the size and animacy tasks. The two
colors indicate the two DSMs. Values closer to zero correspond to better predictive power.

3. Results

3.1. Maximum likelihood estimation: Logistic

In terms of overall ability to predict behavioral responses, model variants containing the
item-composite evaluation mechanism perform substantially better than model variants con-
taining the other two semantic evaluation mechanisms. The log-likelihood fitness values for
each model variant (Fig. 4) indicate that the item-composite semantic evaluation model was
most likely to have generated the observed data (see Table SI-3b for raw values in the Support-
ing Information). The weighted AIC scores show that the advantage of the item-composite
model variants is substantial (wAIC for item-composite: 1.0, for adjective-composite and
single-adjective: 0.0 each). The results additionally indicate that when summed across all
models and tasks, the models that use GloVe outperform the models that use word2vec (wAIC
for GloVe: 1.0, word2vec: 0.0). As mentioned above, these model comparisons were done
using a restricted set of more ambiguous words, which exclude any trial where the target word
was used to construct the item-composite representations. In the Supporting Information, we
report the results of this and other analyses on the full set of trials, which show similar results
(though, as expected, some of the performance scores are inflated for the item-composite
model) (see Tables SI-1c, SI-2c, SI-3c, SI-4c in the Supporting Information).

3.2. Correlation analysis

Using the logistic decision-making model, we carried out a correlation analysis to char-
acterize the degree of correspondence between each model’s predicted responses and the
observed responses (Fig. 5) (see Table SI-1b for raw correlation coefficients in the Support-
ing Information). The item-composite model yields numerically the largest and consistently
reliable (all ps < .05) correlations between the predicted and observed responses across the
two embedding spaces. When averaged across both tasks and both embeddings, the item-
composite model has the highest correlation of .63, followed by the adjective-composite
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12 of 36 E. Diachek, S. Brown-Schmidt, S. M. Polyn / Cognitive Science 47 (2023)

Fig. 5. Pearson r coefficients between the predicted responses and the mean human judgments for the size task
(upper panels) and animacy task (lower panels). Left panels indicate results from models using the GloVe DSM
and right panels the word2vec DSM.

model with a correlation of .10, and the single-adjective model with a correlation of −.02.
All of the pairwise comparisons between these Fisher-transformed correlation coefficients
are significant, with all zs > 3.53, and all ps < .0004). When averaged across all models
and embeddings, the correlation coefficients for the size and animacy tasks were significantly
different with the means of .35 and .13 for size and animacy tasks, respectively (the differ-
ence between Fisher-transformed correlation coefficients z = 6.88, p < 10−11). When aver-
aged across all models and tasks, the GloVe and word2vec embeddings produced numerically
slightly different results with the means of .28 and .20, respectively (the difference between
Fisher-transformed correlation coefficients z = 2.38, p = .02).

We sought to determine whether the substantial advantage of the item-composite model
was due to the larger number of word vectors used to construct the semantic composites
relative to the other two models. A follow-up analysis suggests that the item-composite model
performs at a superior level even when the number of words used to make the composites is
matched across the different model types. This analysis involves a specialized permutation
analysis on the trials using the size task. For each permutation, we randomly selected three
words each from the sets of unanimous big and small words used to construct three-item
semantic composite representations for the item-composite model. We used these words
to construct a new difference axis and reran the correlation analysis reported above. We
repeated this procedure 100 times (for both the GloVe and word2vec model variants) to
obtain a distribution of correlation values. The mean correlation coefficient across the 100
permutations was .48 for GloVe and .52 for word2vec (Fig. 6). While these correlation values
were numerically smaller than for the original item-composite model (means of .69 and
.72 for GloVe and word2vec, respectively), they were reliably larger than the correlation
values associated with adjective-composite model (.25 and .26 for GloVe and word2vec,
respectively). In other words, the three-item semantic composite model showed a better
correspondence to human responses than the adjective-composite model, for 99 out of the
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E. Diachek, S. Brown-Schmidt, S. M. Polyn / Cognitive Science 47 (2023) 13 of 36

Fig. 6. A distribution of Pearson r correlation coefficients for 100 three-item variants of the item-composite
models, constructed using a permutation procedure. Correlation coefficients reflect the correspondence between
the model’s predicted responses and the mean human judgments for the size task using GloVe (left panel) and
word2vec (right panel). AC indicates the correlation coefficient calculated for the adjective-composite model, and
Full IC indicates the correlation coefficient calculated for the item-composite model with all unanimously judged
items included in the semantic composite.

100 permutation-based models. This was true for both GloVe and word2vec. This indicates
that the predictive advantage of the item-composite model is due to the semantic identities of
the words used to construct the semantic model, rather than the quantity of words.

3.3. Pairwise order consistency

A pairwise order consistency analysis (following Grand et al., 2022) also demonstrated
the superiority of the item-composite model to the other models in terms of the degree
of correspondence between each model’s predicted responses and the observed responses
(Fig. 7) (see Table SI-2b for raw pairwise order consistency coefficients in the Supporting
Information). A pairwise order consistency score of 100% indicates perfect correspondence
between model and observed behavior, and 50% indicates chance-level performance. We
assessed statistical significance using a permutation analysis with 10,000 random shuffles
of the model-produced evidence values. This allowed us to construct a null distribution
and calculate p-values for responses from each judgment task within each distributional
model, yielding four pairwise order consistency statistics for GloVe-size, GloVe-animacy,
word2vec-size, and word2vec-animacy.

On average, the single-adjective model performed at chance levels, with mean pairwise
order consistency values: GloVe-size = 55% (p = .98), GloVe-animacy = 48% (p = .90),
word2vec-size = 56% (p = < .0001) and word2vec-animacy = 40% (p = .99). The adjective-
composite model performed better by a few percentage points, which caused three of the
pairwise order statistics to rise above the permuted distribution, but word2vec-animacy
remained at chance levels, GloVe-size = 58% (p < .0001), GloVe-animacy = 54% (p < .01),
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14 of 36 E. Diachek, S. Brown-Schmidt, S. M. Polyn / Cognitive Science 47 (2023)

Fig. 7. Pairwise order consistency values for the size task (upper panel) and animacy task (lower panel). Different
colors represent two DSMs. Left panels indicate results from models using the GloVe DSM and right panels the
word2vec DSM.

Fig. 8. Log likelihood values for the LBA decision model combined across the size and animacy tasks. The
different colors indicate the two DSMs. Values closer to zero indicate a better fit.

word2vec-size = 60% (p < .0001) and word2vec-animacy = 44% (p = .99). The item-
composite model performed substantially better than the other two models, with all pairwise
order statistics substantially above chance, GloVe-size = 73% (p < .0001), GloVe-animacy
= 72% (p < .0001), word2vec-size = 74% (p < .0001) and word2vec-animacy = 71% (p
< .0001). The GloVe and word2vec models performed similarly well when averaged across
model variants, with mean pairwise order consistency of 59.96% and 57.33%, respectively.

3.4. Maximum likelihood estimation: Linear ballistic accumulator

Broadly speaking, simulations using the LBA decision rule also demonstrated the superi-
ority of the item-composite semantic evaluation algorithm to the other algorithms, in terms
of overall predictive power of the models (Fig. 8) (see Table SI-4b for raw values in the Sup-
porting Information). This demonstrates that the item-composite algorithm can be integrated
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Fig. 9. Probability density functions for observed and predicted reaction times using the item-composite LBA
model with GloVe (left panels) and word2vec (right panels) embeddings. Top panels correspond to response times
for big and animate responses. Bottom panels correspond to response times for small and inanimate responses.
The best-fitting item-composite model predicts a larger response time difference between strong and weak words
than is observed.

into a framework that predicts response times, though some of the following analyses reveal
substantial room for improvement in this regard. As with the logistic decision model, model
variants including the item-composite mechanism were substantially more likely to have
generated the observed data (wAIC for item-composite: 1.0, for adjective-composite and
single-adjective: 0.0 each). With the logistic decision model, model variants including GloVe
provided better fits to the observed data. Here, model variants including word2vec yielded a
better fit to the observed data (wAIC for GloVe: 0.0, word2vec: 1.0). We return to this point
in the discussion.

A closer examination of trial-level predictions indicated that all models produced qualita-
tively poor fits to certain aspects of the observed response latencies. Fig. 9 shows the prob-
ability density for the observed and predicted reaction times for correct responses using the
item-composite LBA model. For this analysis, we partitioned the trial events based on the
model’s estimate of evidence strength (the evidence scores described in Section 2.2.2) for a
given word being judged in a given task. The top 50% of evidence scores were treated as
strong evidence, and the bottom 50% of evidence scores were treated as weak evidence.

This analysis reveals that the item-composite LBA model predicts a much larger differ-
ence in response times between strong-evidence and weak-evidence trials than is seen in
the observed data. In the observed data, participants are reliably faster to respond for words
labeled as having strong evidence than weak evidence. For this analysis, we aggregated across
the two judgment tasks. For big and animate responses, trials with strong evidence were
64 ms faster than trials with weak evidence (t(41) = −21.73, p < 10−15). For small and inani-
mate responses, trials with strong evidence were 30 ms faster than trials with weak evidence
(t(41) = 8.51, p < 10−9). The model correctly predicts that trials with strong evidence will be

 15516709, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13336 by V

anderbilt U
niversity M

edical, W
iley O

nline L
ibrary on [11/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 36 E. Diachek, S. Brown-Schmidt, S. M. Polyn / Cognitive Science 47 (2023)

faster than trials with weak evidence, but the model gets the magnitude of the effect wrong.
For simulated big and animate responses, trials with strong evidence were 648 ms faster than
trials with weak evidence (t(41) = −58.65, p < 10−15). For simulated small and inanimate
responses, trials with strong evidence were 521 ms faster than trials with weak evidence (t(41)

= −58.66, p < 10−15).
The adjective-composite LBA model has a similar problem, though the problematic over-

prediction is even more pronounced. For simulated big and animate responses, trials with
strong evidence were 1,111 ms faster than trials with weak evidence (t(41) = −76.46, p <

10−15). For simulated small and inanimate responses, trials with strong evidence were 1,085
ms faster than trials with weak evidence (t(41) = −66.54, p < 10−15).

4. Discussion

Semantic memory stores information about the world and the things in it. DSMs offer
insight into the nature of human semantic memory and have been used both as a tool to
understand behavioral data and as theories of the cognitive representation of semantic knowl-
edge (Landauer & Dumais, 1997; Lund & Burgess, 1996; Jones & Mewhort, 2007). These
models provide an automated way to construct semantic spaces and can be combined with
the cognitive mechanisms of decision-making to characterize human semantic categorization
behavior.

In the current paper, we combined the principles of the multiple-trace theory of memory
(MINERVA 2; Hintzman, 1986), the instance theory of semantic knowledge (ITS; Jamieson
et al., 2018), and the methods from Grand et al. (2022) to build a computational model of
binary semantic classification. ITS proposes that encounters with words are stored as individ-
ual traces in episodic memory and that the semantic meaning of a word can be constructed
on the fly by retrieving a blend of many memory traces containing independent instances of
usage of that word from episodic memory. Jamieson et al. (2018) demonstrate that ITS does a
good job inferring the meaning of homonyms from the local linguistic context and can capture
the taxonomic structure of sets of words from distinct categories.

In our simulation of the binary semantic classification task, we compare two instance-
inspired cognitive mechanisms. In the case of the adjective-composite algorithm, the semantic
identity of a set of adjective labels is retrieved (as in Grand et al., 2022). In the case of the
item-composite algorithm, the semantic identities of representative items are retrieved. We
paired these semantic evaluation algorithms with two cognitive models of decision-making.
The first model uses a logistic function to simulate the likelihood of each choice decision.
The second model incorporates LBAs (Brown & Heathcote, 2008) to simulate both responses
and response latencies as a race between accumulators representing the two extremes of a
decision axis.

Our findings demonstrate that the model variants containing the item-composite semantic
evaluation algorithm provide a better account of human classification responses and response
times in the binary semantic classification task, relative to two other semantic evaluation
algorithms. The item-composite algorithm constructs its item composites using the vector
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representations of words judged unanimously by all participants for each response category.
To fairly evaluate these models, we only examined judgments for the non-unanimous words
not used in the construction of the item-composite model. Examining the set of ambiguous
words provides a challenging test for the models.

As mentioned earlier, model comparisons using the full dataset (including all trials) are
presented in the Supporting Information. These results show a consistent pattern of results
to those on the restricted dataset for all three main analyses, though item-composite model
performance is generally inflated, as expected. This inflation is particularly noticeable in the
results of the correlation analysis. The Supporting Information also evaluates the models on
an independent dataset using the same semantic classification tasks, finding similar results in
all regards (see Tables SI-1a, SI-2a, SI-3a, SI-4a in the Supporting Information).

The item-composite model uses more item representations to construct its composite rep-
resentations than the other models. However, this difference does not seem to explain the
difference in performance of the two models. Using a permutation analysis, we subsampled
the words used to construct the semantic decision axis in the item-composite model, match-
ing the number of items used in the adjective-composite model. The item-composite model
retained its predictive advantage in 99% of these permutations, suggesting it is the quality
of the words used to construct the difference axis, not the quantity, that drove the observed
pattern of results. Together, these findings suggest that a cognitive mechanism involving the
retrieval and blending of items that are representative of the extremes of the semantic decision
axis is more promising than a mechanism using the adjective labels directly.

We used two DSMs, GloVe and word2vec, in the modeling framework, primarily to demon-
strate that the advantage of the item-composite model is not dependent on the particular DSM
used to construct the word embeddings. A comparison of the two embedding spaces to one
another was generally inconclusive regarding their relative utility for cognitive modeling. The
two DSMs performed similarly well overall. While GloVe outperformed word2vec using the
logistic model, word2vec outperformed GloVe using the LBA model. It is not clear what
aspects of the DSMs are responsible for these differences. Word2vec is a predictive model
with hidden layers that learn representations of words through prediction and self-correction,
and GloVe is a latent semantic abstraction model which lacks this predictive component.
However, both models use co-occurrence information in similar ways, and they were not
matched in terms of secondary characteristics, such as the specific text corpus used for train-
ing. Other groups have also found that these two models have similar utility in cognitive
model development. For example, Pereira, Gershman, Ritter, and Botvinick (2016) found
that word2vec and GloVe produced comparable results in a large study comparing various
DSMs on word association, synonyms and analogy problems, and similarity and relatedness
judgments.

Our assumption that semantic reasoning is based on an on-the-fly retrieval of individual
word instances is broadly consistent with a variety of findings from the study of real-time
lexical processing, which show that word meanings are flexible in context, drawing on
multiple possible meanings in a context-dependent manner (Eberhard, Spivey-Knowlton,
Sedivy, & Tanenhaus, 1995; Metzing & Brennan, 2003). For example, interpretation of
referential expressions like “the girl” and “the peanut” is shaped by the properties of the
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overall discourse they are embedded in, including the referents and their properties. For
example, in a context that illustrates the animacy of a cartoon peanut, a sentence like “The
peanut was in love” is easily processed, but a locally coherent sentence like “The peanut
was salted” results in confusion as indicated by an increased N400 effect (Nieuwland & Van
Berkum, 2006; also see Nieuwland, Otten, & Van Berkum, 2007). Likewise, an instruction
like “Put the cube inside the can” given a context with two differently sized cans causes
momentary confusion if the cube is small enough to fit in either can, whereas this confusion
is lifted if the cube is larger and only will fit in the larger of the two cans as indicated by the
earlier eye fixations on the target object (Chambers, Tanenhaus, Eberhard, Filip, & Carlson,
2002; also see Chambers, Tanenhaus, & Magnuson, 2004).

The idea that semantic classification involves comparing a target with other items is sup-
ported by findings from studies of language production. For example, adjectives like small
and large tend not to be produced by speakers unless the immediate context contains items
that contrast along the size dimension and the speaker has noticed them (Brown-Schmidt &
Tanenhaus, 2006; Brown-Schmidt & Konopka 2008; Pechmann, 1989). For example, when
naming a butterfly, if the speaker fails to notice a larger one in the scene, they are likely to sim-
ply say “butterfly,” and if they do notice the larger butterfly the timing of when the adjective is
produced is strongly predicted by the latency of the eye-fixation to the size-contrasting item,
with early looks producing prenominal modifiers (e.g., “the small butterfly”), and later looks
producing late modifiers (e.g., “the butterfly, uh small one”), unless the speaker is using a
language that affords postnominal modification (e.g. “la mariposa pequeña”; Brown-Schmidt
& Konopka, 2008).

The mechanism comparing a target word with representative items from a response cate-
gory potentially provides insight into how a relevant comparison class shapes semantic judg-
ment. While we do not address this question in the present work, the set of extreme exemplars
that are retrieved may itself be a contextually dependent process; if so, this may explain some
of the contextual dependency in how certain linguistic expressions are interpreted in rich con-
texts. In our study, when making a size judgment, participants had a reference point as they
were asked to judge a size of an object compared to a shoebox. As such, it was not necessary
for participants to alter the set of comparison items from trial to trial. However, the flexible
nature of the retrieval process described here opens up the possibility of using this model to
make more flexible classification judgments.

The item-composite model allows for the reference point to shift in different contexts by
altering the set of retrieved representative examples for each semantic category. For example,
the model could be used to judge the relative size of things in a cellular environment by
using the descriptive phrase cellular environment alongside the category label (big or small)
to retrieve representative items. In this context, ribosomes could be judged relative to small
items like virus and RNA, and large items like nucleus and endoplasmic reticulum. In contrast,
the model could use the phrase geographical entities to judge Texas relative to small things
like Galapagos Islands and Switzerland and large things like Spain and Africa.

Indeed, it is well-established in the referential processing literature that the real-time inter-
pretation of phrases like the small glass is driven by the relevant comparison set in the imme-
diate context (Sedivy, Tanenhaus, Chambers, & Carlson, 1999; Sedivy, 2003): The adjective
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“small” evokes a 4-cm tall glass when the context contains a 4-cm and an 8-cm glass, but
“small” evokes the 8-cm glass when it is paired with a 12-cm one. Further, these comparison
classes are created on the fly, based on multiple cues in the local context. In a context where
a listener views three drinking glasses (4 cm, 8 cm, 12 cm tall), and the speaker says “Pick
up the small glass,” this sentence is typically interpreted as referring to the smallest glass
that the speaker can see: If the 4-cm glass is obscured from the speaker’s view, the listener
interprets “the small glass” to be the 8-cm tall one, rather than the “small” 4-cm glass that
the speaker cannot see (Heller, Grodner, & Tanenhaus, 2008; Heller, Parisien, & Stevenson,
2016; Ryskin, Benjamin, Tullis, & Brown-Schmidt, 2015). Findings like these might be cap-
tured by a semantic model that can sculpt a retrieved set of representative exemplars on the
basis of properties of the local context.

This account could also provide theoretical leverage regarding the flexibility of human
semantic knowledge. Previous studies indicate that humans are capable of rapidly and flexibly
reconfiguring their semantic knowledge to meet various task demands. A good example of
such conceptual flexibility is ad hoc categories (Barsalou, 1983), such as things to sell at
a garage sale or things that can fall on one’s head. While these categories are unlikely to
be part of a person’s core semantic knowledge, participants can nevertheless perform such a
classification rapidly, suggesting that they can quickly construct a representation of a category
they have never encountered before. An attempt to simulate performance on such a task could
begin with the retrieval of a few representative items from the category, though there might
be a theoretical challenge in determining what items should be used to define the other end of
the semantic decision axis (i.e., things inappropriate to sell at a garage sale).

Many natural language models have grappled with the importance of contextual informa-
tion. For example, the probabilistic Topics model (Griffiths et al., 2007) uses principles similar
to LSA (Landauer & Dumais, 1997), and in addition incorporates the idea that certain words
tend to be distributed over certain discourse topics (e.g., nature, education, health). Thus, the
Topic model partially includes contextual information in the representation of words. As a
result, the Topic model can produce better fits to free association data than LSA and was
able to account for homonym, disambiguation, word prediction, and discourse effects can be
problematic for cognitive models incorporating LSA (Griffiths et al., 2007).

The importance of contextual information has become evident with the advent of a
new class of DSMs: transformer models such as BERT (Devlin et al., 2018), ELMo
(https://allenai.org/allennlp/software/elmo), and GPT-2 (Radford et al., 2019). The key
difference between this novel class of models and older models is that it integrates contextual
information within the representation of each word, significantly improving performance
on a variety of semantic tasks, including tasks involving the production of coherent lan-
guage (Bhatia and Richie, 2021). While transformer models outperform many other types
of computational models on semantic tasks, work remains to be done to determine their
cognitive plausibility. These models process each word in a phrase or sentence in parallel,
but evidence from sentence processing literature suggests that sentence processing is linear
and incremental (Kamide et al., 2003).

Our study leaves open a number of questions for future work. The item-composite model
uses representations constructed from large linguistic corpora. However, these semantic
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vectors do not have easily interpretable semantic dimensions, which makes it unclear how the
relevant words, used to construct the axes, are retrieved from memory. One possibility is that
some perceptual features of concepts can be recovered through linguistic co-occurrence statis-
tics. Previous research has shown that individuals who lack certain sensory experiences—for
example, congenitally blind individuals—possess detailed semantic knowledge about per-
ceptual features of various objects. For example, van Paridon, Liu, and Lupyan (2021)
demonstrated that congenitally blind people, despite the lack of visual perceptual experience,
formed associations between colors and adjectives (e.g., blue is cold, red is hot) that were
similar to the intuitions of sighted people. Similarly, Kim, Elli, and Bedny (2019) compared
blind and sighted people’s knowledge of the appearance of common animals. The authors
found that individuals who were blind inferred features of animal appearance from taxonomy
and habitat properties (e.g., because sharks live in the water, they must have scaley skin like
other fish). These results indicate that knowledge of animal appearance (even if incorrect)
can be acquired through inference from language, rather than through memorization of facts
directly specifying those properties. An alternative explanation is in line with a computational
model of language processing described by Johns and Jones (2015), which relates to both
usage-based theories of language learning and the instance theory of semantic knowledge.
According to this proposal, during language processing, linguistic information (e.g., flowers
bloom in the spring) is encoded along with referential information (i.e., perceptual informa-
tion experienced during language comprehension, e.g., flower color, size, etc.). Later, when
the linguistic memory trace is retrieved, the attached experiential referential information is
retrieved with it, making it possible to judge flowers on various perceptual properties.

Finally, our study does not answer the question of whether the semantic decision axes
used in this work are part of an individual’s existing representational knowledge or if they
are constructed on the fly to meet specific task demands. Instance-based theories of semantic
knowledge describe how a representation of word meaning can be constructed on the fly in
a highly parallel, probe-driven retrieval process (Jamieson et al., 2018). Following Jamieson
et al. (2018), we speculate that the composite representations used in our models might be
constructed during task performance and not necessarily constitute a part of the participant’s
core semantic knowledge.

Open Research Badges
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Appendix

List of unambiguous words used in the construction of the composite semantic evaluation
model.

Big Small Animate Inanimate

acrobat almond acrobat acid
actor ant actress aircraft
actress apple adolescent airport
adolescent aspirin adult album
adult bacon alligator alley
africa bait antelope ambulance
agent bandage ape anchor
aircraft bead apple antenna
airplane bean architect apartment
airport bee artist application
alley berry assistant apron
ambulance bible astronaut article
ancestor bluejay athlete ashtray
antelope bracelet audience atlas
antler broccoli author attic
apartment bruise ballerina automobile
ape bubble bartender award
arena buckle bear badge
army bug beaver bag
artist butter beggar balcony
asia butterfly biologist ball
assistant button bird balloon
astronaut camera boy ballot
atmosphere candle boyfriend bandage
attorney card brother barn
audience cardinal bull baseball
aunt carrot burglar basement
author cashew butcher basket
automobile caterpillar butler basketball
baker cent butterfly bassinet
ballerina chalk camel bath
bandit charcoal canary bathroom
bank checkers candidate bathtub
banker cheddar captain battery
barn cheek carpenter bay
bartender chemical cat beach
bay cherry cheerleader bedroom
beach chip chef beer
bedroom chocolate child belt
beggar cinnamon chimpanzee bench
bicycle clove climber beverage
bike coal cobra bicycle

(Continued)
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Big Small Animate Inanimate

biologist cocktail colonel bill
bison coin comedian biscuit
blackboard coleslaw companion blackboard
blockade collar consumer blanket
boat compass cousin blockade
body cookie cow blueprint
booth cork cowboy board
boss cotton creature boat
boy cream cricket bolt
boyfriend crumb criminal bomb
bridge crystal crocodile book
brother cue crow boot
brunette cuff customer booth
buffalo cup dad bottle
building daisy dancer bouillon
bull dandruff deer boulder
bully diamond dentist boulevard
bureau diaper dictator bowl
bus dice doctor box
camel dime driver bracelet
canoe dollar eagle brake
canvas doorbell electrician brandy
canyon dough elephant brick
capital drug elk bridge
captive dust emperor brook
car ear employee broom
caravan earring employer brush
carnival egg farmer buckle
carpenter electron father buggy
carriage envelope fireman building
cashier eyelash fish bulb
castle feather flower bulletin
cathedral fig friend bun
cattle finger frog bureau
ceiling fingernail gentleman bus
cellar fish girl button
champion fist goose cabin
chapel flask gorilla cafe
chauffeur flea grasshopper cafeteria
cheerleader flower guest cage
chef fly gymnast cake
chemist foot hawk calculator
chief fragrance hen calendar
church freckle hornet camera
citizen fries horse can
clerk frost hostess canal
cliff garlic hound candle

(Continued)
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Big Small Animate Inanimate

climber gem husband cane
closet gene infant cannon
coach germ instructor canoe
college gin inventor canvas
colonel glasses kid cap
comet grape lady cape
commander gum leader caravan
community hand lion card
computer heel lover carpet
concert honey mailman cart
conductor jar man carton
consumer jello manager cash
contractor jewel mayor casket
convent key miner castle
cook kitten mob cathedral
cooler label mongoose cave
cop lace monk cellar
copier leaf monkey cello
corporation lemon moth cemetery
couch lens mother cent
country lime mouse chain
county lint mule chalk
cow lipstick navigator chamber
cowboy lizard nephew champagne
criminal lock niece charcoal
critic lollipop nun check
cupboard loop nurse checkers
curtain magnet octopus chime
cyclone mascara officer chimney
dad match otter chisel
dam mint outlaw church
daughter mitten owl cigar
dentist molecule ox cigarette
department money oyster cinnamon
designer mosquito parent clay
detective moss parrot cliff
dictator moth partner clippers
dinosaur mouse patient closet
dishwasher mouth pedestrian clothes
diver nail pelican coal
doctor napkin penguin cobweb
dolphin necklace person coffin
donkey needle philosopher coin
door nitrogen pig coleslaw
dorm nose pirate cologne
dragon note plumber column
driver novel poet compass

(Continued)
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Big Small Animate Inanimate

dryer nucleus politician computer
dungeon nut pony cone
earth ointment preacher contract
editor olive president convent
egypt ornament priest cookbook
electrician peanut prince cookie
elephant pear princess cooler
elk pearl prisoner copier
emperor pedal producer cord
empire pen professional cottage
employee penny puppy couch
employer pill quail court
engineer pimple queen cracker
escalator pin rabbit crater
europe plaque raccoon crayon
factory pocket referee crevice
family poison reptile crown
farm popcorn robber crutch
farmer proton roommate cube
father prune rooster cuff
field puck rose cup
fighter quarter runner cupboard
fleet raisin sailor curb
florida rat salesman cushion
forest razor salmon custard
fort ribbon scallop cyclone
fountain ring secretary cylinder
france salt sergeant dagger
freeway sand serpent dam
friend sapphire shark dart
furniture saucer sheep dashboard
galaxy sausage shepherd deck
gang screw sibling denim
gangster seed sister deodorant
garage shoe snake desk
garden shoelace son dessert
general shrimp spider detergent
gentleman signature spouse diagram
giraffe slime stewardess dial
girl slug stranger diamond
gorilla snack student diary
governor soap surgeon dice
graduate sock swan dime
grave spice swimmer diner
groom spider teacher dinner
guard sponge teenager diploma

(Continued)
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Big Small Animate Inanimate

guardian spool termite disc
gym staple thief dish
gymnast straw toad dock
haystack strawberry tortoise doll
helicopter string tourist dollar
herd syringe traitor doorbell
hero tack turtle dough
highway tag typist drawer
hiker tangerine uncle dress
horse tart victor drink
hospital tea visitor driveway
house thermometer waiter drug
human thimble waitress dryer
hurricane thorn walrus dune
iceberg thumb warrior dungeon
igloo tick whale dustpan
inmate ticket winner earring
instructor toad witness elevator
inventor toast wolf encyclopedia
island toe woman engine
jeep tomato zebra eraser
jet toothbrush escalator
judge toothpaste essay
jungle trigger explosion
jupiter tulip factory
kangaroo turnip feast
keeper tweezers feather
king twig fiddle
kitchen virus fireplace
lady vitamin flag
landscape wallet flannel
lawn wasp flashlight
lawyer wax flask
leader wick fleet
leopard wire floor
lieutenant worm flour
limousine wound fort
lion wrench fossil
lodge wrist fragrance
london yolk freeway
lounge fudge
lover funeral
magician fur
man furniture
manager gallon
mansion garage
mars garbage
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Big Small Animate Inanimate

mattress gauze
meteor gavel
microwave gin
military glacier
mister glass
moat glasses
mob glue
monster gold
moon gown
moose grave
mother gravel
motorcycle grease
mountain grill
museum ground
neptune hail
newsstand hammer
nun hammock
ocean hamper
office handbag
officer handcuffs
opera hanger
orchestra hatchet
outdoors haystack
owner heater
painter helmet
palace hoe
parent hood
paris hook
partner hoop
party horizon
passenger hospital
path hurricane
patient hut
patriot igloo
pavement incense
pedestrian inn
people iron
person item
philosopher jacket
piano jar
picnic jeans
pirate jello
planet jelly
playground jewel
plumber journal
pluto jug
police keg
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Big Small Animate Inanimate

politician kettle
pony key
pool keyboard
pope kitchen
prairie kite
preacher kleenex
predator knapsack
president knife
priest knob
primate knot
prince labyrinth
prison lace
producer lamp
professor lash
pub letter
publisher lightning
queen linen
radiator lint
raft literature
railroad lock
ram lodge
rebel lollipop
receptionist lounge
referee luggage
refrigerator lunch
reindeer macaroni
resort magazine
restaurant magnet
river mailbox
road mall
robber marble
robot marker
roof mask
room mat
roommate match
runner mattress
sailor mayonnaise
salesman medal
saturn medication
scientist medicine
seashore meteor
senate microphone
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Big Small Animate Inanimate

senator microscope
servant mirror
shark missile
shed mitten
sheep monument
shelter moon
shepherd mop
sheriff motel
ship motor
shore motorcycle
shrine mug
sibling nail
sister napkin
skeleton needle
slope net
society newspaper
soldier newsstand
spouse nickel
stable nicotine
stairs nightgown
stallion nitrogen
statue notebook
store oboe
stranger office
stream ointment
street ornament
student outfit
submarine oval
suburb oven
sun pad
supermarket paddle
supervisor pail
suspect paint
sword painting
tank palace
tavern pan
taxi pants
teacher paper
team parcel
technician passage
temple pasta
territory path
tiger patio
toilet pavement
tornado pedal
tower pen
town pencil
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Big Small Animate Inanimate

tractor penny
traitor pepper
tree perfume
tribe periscope
tricycle phone
trombone pick
tunnel pill
umpire pipe
uncle pistol
unicorn pit
universe pitchfork
university plaid
van plaster
vehicle plate
venus plaza
villain pliers
visitor pocket
volcano pocketbook
volunteer poison
waiter polyester
waitress pool
wall port
walrus portrait
warehouse pot
warrior pottery
waterfall powder
well pub
whale puck
wife pudding
winner pump
wolf puzzle
woman quill
worker racket
world radiator
yacht radio
yard raft
zoo rag

railroad
rake
razor
receipt
recipe
record
refrigerator
relish
report
restaurant
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Big Small Animate Inanimate

rifle
ring
road
robe
rock
rocket
roof
room
roost
ruby
rum
saddle
saloon
salt
sand
sandwich
sapphire
saturn
saucer
scale
scalpel
scissors
scotch
screen
screw
screwdriver
scribble
sculpture
seat
shack
shampoo
shears
shed
shelf
ship
shirt
shoe
shoelace
shop
shortcake
shovel
shutter
sickle
sidewalk
siding
sign
signature
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Big Small Animate Inanimate

sink
sketch
ski
skyscraper
slacks
sleeve
slime
sliver
slope
snack
snorkel
soap
sock
sofa
spatula
spit
spoon
stage
stairs
stake
stamp
stapler
step
stereo
stethoscope
sticker
stocking
stone
stool
stove
straw
street
string
submarine
suit
suite
sunrise
sunset
supermarket
supper
survey
swing
switch
table
tack
tag
tank
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Big Small Animate Inanimate

tape
taxi
teapot
telephone
telescope
temple
thermometer
thimble
tie
tile
toilet
tool
toothbrush
toothpaste
torch
towel
toy
tractor
train
trash
tray
tread
treasure
treat
trench
triangle
tricycle
trophy
truck
trumpet
tub
tunnel
twine
typewriter
umbrella
underwear
uniform
vacuum
van
vehicle
velvet
vent
venus
vinegar
viola
violin
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Big Small Animate Inanimate

volleyball
wagon
wall
wallet
wand
wardrobe
wave
wax
well
wheel
whip
whistle
wick
windshield
xerox
yacht
yarn
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