Activity within the default mode network predicts the organization of human memory.

James E. Kragel^{1,2} and Sean M. Polyn²

¹Neuroscience Graduate Program, ²Department of Psychology, Vanderbilt University

VANDERBILT

Introduction

- The default mode network can be fractionated into sub-networks that support specific cognitive functions including memory retrieval.1
- A posterior medial subsystem has been proposed to support context-based representations fundamental to episodic memory.2
- Despite evidence linking these cortical networks to mnemonic functions, it is unclear how they influence memory search.
- We developed a family of neurally informed computational models to test the relationship between functional network activity and cognitive mechanisms that predict the organization of memory search.

Experimental Methods

Experiment 1:

- 18 participants (12 female) performed 18 recall trials each during fMRI scanning
- Preprocessing via SPM8 (realignment, unified segmentation, smoothing)
- Independent component analysis (ICA) was used to identify functional networks of

Experiment 2:

- 20 participants (12 female) performed 6 recall trials each during fMRI scanning
- Preprocessing and analysis of functional data match Experiment 1

Computational Framework

Default mode network activity informs context maintenance

Behavioral Results:

 Distraction during the delay conditions caused a decrease in recall of recency items (t = 4.44, P < 0.0001), and a shift in recall initiation $(F_{1.17} = 5.13, P = 0.036)$.

Linking Hypotheses:

- Delay period activity in networks of interest reflects the disruption of a current contextual
- Delay period activity reflects the integration of start-of-list information following distraction, allowing access to the list.

Neural Signals of Interest:

 Using ICA, we identified multiple functional networks that exhibit delay-period sensitive activity. RFP, right frontoparietal; LFP, left frontoparietal; CON, cingulo-opercular network; DMN, default mode network.

Modeling Results:

 Decreased activity in the DMN reflects an increase in context disruption, leading to improved prediction of recall sequences (D = 10.64, P = 0.005)

Neural signal reflects retrieval of start-list context

 Increased CON activity during the delay reflects start-list context retrieval, allowing for improved prediction of behavior (D = 9.28, P = 0.009).

DMN RFP LFP CON Control

Model Performance

Experiment 1: DMN Informed Model

Experiment 2: PM Informed Model

Posteromedial network activity informs contextual retrieval

Behavioral Results:

 Subjects demonstrated temporal organization during free recall, with a mean temporal factor score³ of 0.59 (t = 6.50, P < 0.0001).

Neural Signals of Interest:

Modeling Results:

 Three independent components from Kragel and Polyn⁴ that demonstrate spatial correspondence to the default mode network. PM, posteromedial; PC, posterior cingulate; MP, medial prefrontal.

• Two independent components from Kragel and Polyn⁴ that demonstrate spatial correspondence to the dorsal attention, and frontoparietal control networks. DFP, dorsal frontoparietal; RFP, right frontoparietal.

 PM signal was most informative during late output positions. RFP signal improved prediction

during early recalls.

Conclusions

- Deactivation in the default mode network predicts the disruption of recency effects during recall initiation. These findings link activity in this network to the maintenance of internal contextual states.
- Increased activity within a posteromedial network increases the likelihood that episodic associations are utilized during memory search. This links activity in this network to contextual retrieval processes that guide free recall behavior.
- Neurally informed computational models provide a means to identify explicit cognitive mechanisms supported by neural systems, and constrain formal models of human memory.

References

- I. Andrews-Hanna, et al. Neuron 65, 550-562 (2010).
- 2. Ranganath, C. & Ritchey, M. Nature Reviews Neuroscience 13, 713–726 (2012).
- 3. Polyn, S. M., Norman, K. A. & Kahana, M. J. Psychological Review 116, 129–156 (2009).
- 4. Kragel, J. E. & Polyn, S. M. Cereb. Cortex (2013).

Special thanks to the Vanderbilt University Computational Memory Lab, especially Neal Morton and Joshua McCluey.

This work was support by NSF Grant 1157432, NIH ULI TR000445, a Vanderbilt University Discovery Grant, and P30-EY008126.

Linking Hypotheses:

 Activity in components of interest during recall reflects the integration of contextual information into a recall cue that is influences memory search.

9.10, P = 0.003). PM MP PC DFP RFP Control Model

 Increased PM activity reflects increased context retrieval, improving prediction (D =

 Decreased RFP signal reflects increased context retrieval, also improved the fitness of the neural model (D = 5.97, P = 0.01).