Activity within the default mode network predicts the organization of human memory.
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Default mode network activity informs context maintenance

* The default mode network can be fractionated into sub-networks that
support specific cognitive functions including memory retrieval.'

* A posterior medial subsystem has been proposed to support
context-based representations fundamental to episodic memory.”

* Despite evidence linking these cortical networks to mnemonic
functions, it is unclear how they influence memory search.

* We developed a family of neurally informed computational models to
test the relationship between functional network activity and cognitive
mechanisms that predict the organization of memory search.
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* |8 participants (12 female) performed |8 recall trials each during fMRI scanning

* Preprocessing via SPM8 (realignment, unified segmentation, smoothing)

* Independent component analysis (ICA) was used to identify functional networks of
iInterest

Experiment 2:
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* 20 participants (|12 female) performed 6 recall trials each during fMRI scanning
* Preprocessing and analysis of functional data match Experiment |
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Behavioral Results: Neural Signals of Interest:
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» Distraction during the delay conditions caused a decrease in IC_/LFP o Delay Period Activity = IC,,
recall of recency items (t = 4.44,P < 0.0001), and a shift in 32

recall initiation (F, = 5.13,P = 0.036).
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allowing access to the list. * Decreased activity in the DMN reflects an increase

in context disruption, leading to improved prediction
of recall sequences (D = 10.64, P = 0.005).
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* Using ICA, we identified multiple functional networks that exhibit delay-period sensitive
activity. RFP, right frontoparietal; LFP, left frontoparietal; CON, cingulo-opercular network;
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Neural signal reflects
retrieval of start-list context
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* Increased CON activity during the delay reflects

start-list context retrieval, allowing for improved
prediction of behavior (D = 9.28, P = 0.009).
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Posteromedial network activity informs contextual retrieval

Behavioral Results: Neural Signals of Interest:
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* Subjects demonstrated temporal organization demonstrate spatial correspondence to the default mode network.
during free recall, with a mean temporal factor PM, posteromedial; PC, posterior cingulate; MP, medial prefrontal.

score’ of 0.59 (t = 6.50,P < 0.0001).

Modeling Results:
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* Activity in components of interest during recall
reflects the integration of contextual information
into a recall cue that is influences memory search. Lag

* Decreased RFP signal reflects increased

context retrieval, also improved the fitness of
the neural model (D = 5.97,P =0.01).

* Increased PM activity reflects increased

context retrieval, improving prediction (D =
9.10,P =0.003).
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* Two independent components from Kragel and Polyn*
that demonstrate spatial correspondence to the dorsal
attention, and frontoparietal control networks. DFP, dorsal
frontoparietal; RFP, right frontoparietal.
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* PM signal was most informative
during late output positions.
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* RFP signal improved prediction
during early recalls.
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Experiment 1: DMN Informed Model
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Experiment 2: PM Informed Model
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Conclusions

* Deactivation in the default mode network predicts the disruption of
recency effects during recall initiation. These findings link activity in this
network to the maintenance of internal contextual states.

* Increased activity within a posteromedial network increases the
likelihood that episodic associations are utilized during memory search.
This links activity in this network to contextual retrieval processes that
guide free recall behavior.

* Neurally informed computational models provide a means to identify
explicit cognitive mechanisms supported by neural systems, and constrain
formal models of human memory.

References

|. Andrews-Hanna, et al. Neuron 65, 550-562 (2010).

2. Ranganath, C. & Ritchey, M. Nature Reviews Neuroscience |3,713-726 (2012).

3. Polyn, S. M., Norman, K.A. & Kahana, M. J. Psychological Review |16, 129156 (2009).
4. Kragel, J. E. & Polyn, S. M. Cereb. Cortex (2013).

Special thanks to the Vanderbilt University Computational Memory Lab, especially Neal
Morton and Joshua McCluey.

This work was support by NSF Grant 1157432, NIH ULI TR000445, a Vanderbilt Univer-
sity Discovery Grant,and P30-EY008126.




