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Abstract

Attribute theories propose that a cognitive system constructs representations with

constituent elements that reflect the attributes, features, properties, or characteristics

of the world and the things in it. These theories are flexible; Attributes may be used

to describe tangible physical things in one’s environment, but also intangible things

like plans and concepts. In the domain of memory, attribute theories describe how

representations of one’s experience are stored, retrieved, and manipulated by the cog-

nitive system. The mathematical language of linear algebra is central to these theories.

Vector operations are used to define various measures of representational distance and

similarity. Matrices are used to define associative structures like synaptic weights in

neural network models, and sets of memories in instance theory models. We exam-

ine some foundational attribute-based approaches to memory theory, including early

attempts to define psychological similarity, and the influential stimulus-sampling the-

ory. We review important empirical phenomena involving memory attributes, including

proactive interference, encoding specificity, and source memory. Finally, we consider

how attribute-based approaches have influenced modern cognitive neuroscientific in-

vestigations and theory.
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Handbook of Human Memory.

1



Keywords: representation; multidimensional; feature; similarity; distance; semantic;

vector; matrix

1 Introduction

An attribute theory of memory focuses on the structure of cognitive representations, on the

nature of the elements composing them, and on the mechanisms, operations, and processes

necessary to store and retrieve them. But what is an attribute, and what is a representation?

These terms are deliberately broad, and are used in a variety of ways in the literature.

Perhaps it is easiest to start concretely, by considering the perceptual system. At any given

waking moment, your perceptual system is busily processing your surroundings, constructing

internal representations that reflect the structure of the external world (Churchland and

Sejnowski, 1992). During breakfast, your gaze lingers on a mug, and a representation is

constructed: a code specifying the attributes of the mug, in other words, its characteristics,

its features, its properties, its qualities. These are potentially concrete things: The color of

the mug, the shape of its handle, the scent of the coffee filling it. But a cognitive theory

needs to also deal with things that are markedly less concrete: The intention to drink the

coffee, the verbal response to a query from a loved one, the plans for the day ahead. In

an attribute-based framework, representations can be constructed for all these things and

more; any thought, any wish, desire, hope, or belief can be treated as a representation, and

can be stored, retrieved, and manipulated by the cognitive system as part of its everyday

processing.

The key idea here is that representations have internal structure; they are composed of

elements, which are a kind of theoretical building block. Each element has an associated

state, which means it has a value associated with it at a given moment. A particular set

of values across a set of elements forms a pattern, and the pattern specifies the attributes

of whatever is being represented. Associations (another theoretical building block) allow

us to link the elements comprising a particular representation to one another, and to link
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elements of one representation to elements of another representation. A wide variety of

attribute-based theoretical frameworks have been developed over the decades, and as we will

see, different frameworks take dramatically different approaches regarding the nature of both

elements and associations.

These basic ideas regarding elements and associations form the foundation of attribute the-

ories of memory, and can be traced back to the earliest theories of memory. For example,

in 1859, Hamilton wrote about the law of redintegration, whereby thoughts that are part of

the same act of cognition become linked, and may suggest one another in the future (OED

Online, 2019). Hollingsworth (1928) defined redintegration in somewhat more modern terms

as “the type of process in which a part of a complex stimulus provokes the complete reaction

that was previously made to the complex stimulus as a whole.” These statements contain

within them the seeds of theoretical concepts suggesting a dynamic approach to memory.

Thoughts, stimuli, and memories may be made of elemental parts that become associated

with one another, and these associations may support retrieval and reactivation of other

elements, whether they correspond to other memories, or past responses.

We begin the chapter by introducing some of the mathematical concepts commonly used in

attribute theories, and then review some of the interesting ways that these concepts have

been used to develop theories of memory. Some of the approaches are more computationally

or mechanistically explicit, and others are more abstract. Some attempt to specify the neural

substrate of particular representations or processes, while others remain agnostic about the

neural underpinnings of memory. Each of these varied approaches has made a substantial

contribution to the literature.

2 The mathematical language of attribute theories

The language of linear algebra is a natural one for attribute-based cognitive theories, in that

it defines mathematical constructs that can be used as representations and associations in

formal and informal models of cognitive processes. For most of this chapter, we will need
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Figure 1: A schematic overview of some of the main ideas behind attribute theories of memory.

only the basic tools of linear algebra: Vectors, vector spaces, and matrices (Perlis, 1991).

The basic ideas will be set up in this section, more advanced mathematical tools will be

described as they arise in particular sections.

2.1 Vectors.

A vector is a ordered set of numbers, either a row or a column. Each one of these numbers is

an element (a representational element, using the language established above). If a particular

vector z has 3 elements, an index variable (say, i) can be used to refer to the value associated

with each element (e.g., z1, z2, z3). A particular vector exists within a vector space, just as a

particular integer exists along a number line. As you’re getting your bearings thinking about

these ideas, it can be useful to think about a Cartesian x-y plane. Each point on the plane

can be described as an ordered set of 2 numbers, the x-coordinate and the y-coordinate.

The vector space is the plane itself, and can be thought of as the set of all possible vectors

that could be represented within the space. So, a vector is simultaneously a set of numbers

and a point in a space. Thinking about vectors as points in a 2- or 3-dimensional space
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is useful because you can visualize these low-dimensional spaces. However, care should be

taken about generalizing your intuitions about low-dimensional spaces to high-dimensional

spaces, where some common intuitions may be violated. Some excellent work by Kanerva

describes the nature and properties of high-dimensional representational spaces (Kanerva,

1988, 2009).

In an attribute theory, a particular vector can correspond to a particular cognitive represen-

tation. Each element is assigned a specific number, which can be thought of as specifying an

attribute or feature. In some models each attribute may have an obvious meaning. Consider

how computers represent color. A 3-dimensional vector can be used to represent a wide

variety of colors in an RGB color space. Here each attribute has a clear meaning: The values

of the three elements describe the amount of red, green, and blue present in the color. A

particular shade of blue could have the coordinates (54, 140, 203). This vector specifies a

point in RGB color space. However, there are other ways to represent this particular piece

of information. For example, the same color can be represented in a 4-dimensional CMYK

color space, with coordinates (73, 31, 0, 20). For these color spaces, each attribute has a

well-defined meaning, but as we will see, one can construct many theoretically useful kinds

of representations where there is no obvious meaning for a given attribute.

As mentioned above, a vector space is the set of all possible vectors that can be represented

within the space. In other words, the vector space defines what values are allowed to be used

in constructing a particular vector. An 8-bit digital RGB space is discrete, each element

can only take on integer values from 0 to 255 (yielding 2563 possible colors). The binary

vector space of a Hopfield network is also discrete, each element can only take the states +1

or -1 (or +1 and 0, depending on which paper you’re reading). Vector spaces can also be

continuous. In many linear associative models, each element in a representational vector is

a real number, making the set of possible vectors infinite. There are no hard rules for what

kind of vector space to use in a particular attribute model, only traditions. This is not to

say that one’s choice of vector space has no consequence, or that different kinds of vector
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spaces are necessarily interchangeable, but it seems reasonable to say that the consequences

are not always well understood.

2.2 Distance and similarity.

A variety of vector-based mathematical operations have been incorporated into attribute

theories of memory, standing in for hypothesized cognitive operations carried out by the

memory system. It will often be useful to compare two representations, either in terms of

the distance between the two points in a vector space, or in terms of the similarity of the

two representations. A variety of mathematical operations are often brought to bear on the

calculation of distance and similarity, which of course are deeply related.

A common feature to measures of distance is that if the two vectors under consideration

are identical, the distance between them is zero. Apart from that, there are a wide variety

of techniques available to characterize distance, each potentially having its own benefits,

drawbacks, or quirks. Of course, two vectors must exist within the same vector space if the

distance between them is to be calculated. Sometimes the choice of vector space will make

one kind of distance measure more sensible. For example, Hamming distance is often used

to calculate distance in a binary or discrete vector space: One iterates through the indices of

the two vectors, and counts up the number of positions where the two vectors have different

values.

In a continuous Cartesian vector space, Euclidean distance may be the most familiar distance

measure for most students; it is the length of a straight line connecting the two points. In

2-d space the Pythagorean theorem can be used to calculate the Euclidean distance between

two points, and an extension of this theorem allows one to do the same for an n-dimensional

space. Other distance functions are also possible, including what is sometimes referred to as

city-block (or Manhattan) distance, which is defined as the sum of the absolute differences

of each of the Cartesian coordinates of the points.

This brings us to the notion of psychological similarity, which is usually defined as a function
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of some distance measure. A unitary definition of similarity is difficult, as the word gets used

in many ways in the scientific literature. Just as there are many ways to characterize distance

(even just considering Cartesian spaces), there are many ways to characterize similarity. In

a sense, similarity is the inverse of distance, in that the similarity of two vectors will tend to

increase as the distance between them decreases. However, whether this inverse relationship

will actually hold depends on which distance measure and which similarity measure are

being used. The mapping from a distance measure to a similarity measure is not always

straightforward. A variety of functions are used to characterize the similarity of two vectors.

For many similarity measures, the similarity of two identical vectors is equal to one, and

similarity falls as distance between the vectors increases.

In a number of models described in upcoming sections, similarity decays as a negative ex-

ponential function of the Euclidean distance between two points. If the distance between 2

points is indicated by D(a,b), then:

similarity = e−τD(a,b) =
1

eτD(a,b)
(1)

With this functional form, as Euclidean distance increases, similarity decreases in a nonlinear

fashion: A distance of 0 yields a similarity of 1, and as distance begins to increase, similarity

drops sharply before leveling off. The term τ commonly appears as a scaling parameter. This

negative exponential function allows a model to capture nonlinear effects in generalization

gradients across a number of experiments (see Section 3.1). The nonlinear mapping from

distance to similarity means that small differences in distance are more important when the

two things being compared are quite similar than when they are already quite distinct. As

a fanciful example to illustrate this point, imagine an animal has a memory for the shade

of red indicating a perfectly ripe berry. While foraging, it encounters a series of berries

with small deviations from that ideal shade of red, and these differences are important, as

they will determine the quality of the animal’s meal. Accordingly, the nonlinear similarity

rule will ensure that these small differences in color correspond to substantial differences in
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similarity. However, if it encounters a set of berries that are already quite far from the target

color (say, different shades of green), minor variations in this distance are less important (as

the berries are already clearly inedible), and accordingly correspond to small differences in

similarity.

A cosine similarity score provides an alternative way to characterize psychological similarity,

and finds widespread use in modeling applications and machine learning. In calculating a

cosine similarity score we consider two vectors as lines projecting from the origin of the

coordinate system. Cosine similarity is the cosine of the angle between those two lines at the

origin. Because cosine similarity depends only on the angle between the two lines projecting

from the origin, it does not have a monotonic relationship to Euclidean distance. Two

vectors can have an arbitrary Euclidean distance separating them, but if they are collinear

with respect to the origin of the coordinate system, they have a cosine of 1; in other words

they are perfectly identical with regard to cosine similarity. Figure 2 demonstrates how cosine

and Euclidean distances can diverge in this regard. This example is not meant to advocate

for either approach, it is simply meant to illustrate how the cosine similarity measure has

a form of scaling built into it. The magnitude of the vector doesn’t matter, just the angle

it takes with respect to the origin. Indeed, this property makes it more appropriate than

Euclidean distance for a wide variety of applications.

2.3 Matrices.

Models of memory need a way to store the information contained within cognitive represen-

tations. For this, many models use matrices as associative structures. Whereas a vector is a

1-dimensional list of numbers (a row or a column) with a single index, a matrix is more like

2-dimensional table, with 2 indices (the first specifying the row and the second specifying the

column of a given element). Instance theories and neural network theories both use matrices

to store memories, though in different ways.
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Figure 2: A coordinate system for a representational space describing different rectangles, extending an

example developed by Kahana (2012). The x-coordinate of a point specifies the width of a rectangle while

the y-coordinate describes its height. Points along the diagonal depict different sizes of squares. Three points

correspond to three rectangles: a has coordinates (5,5) and b (10,10), making them both squares, and c has

coordinates (5,10), making it a rectangle with width 5 cm and height 10 cm. In this representational space,

the Euclidean distance between a and c is 5, and for a and b this is
√

50 ≈ 7.1. The angle separating a and

c at the origin is ≈ 18◦, yielding a cosine similarity of ≈ 0.95. The angle separating a and b at the origin is

0◦, yielding a cosine similarity of 1.0.

3 Early computational theories emphasizing attributes

One might think that the earliest attribute-based theories of memory would deal with quan-

tifiable attributes with clear relations to observable properties of studied material. If any-

thing, the opposite is true: Early theories in this domain grappled with seemingly intractable

and often unobservable psychological concepts ranging from codes representing time to codes

for the meaning of particular words. Only a few cases dealt with scenarios in which it was

possible to characterize stimulus differences in terms of hand-coded attribute values.
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3.1 The nature of psychological similarity.

Attneave (1950) reviewed research going back to the 1930s (with some discussion of earlier

philosophical approaches) grappling with the question of whether a “dimensional” approach

to psychological research could be fruitful, and whether the concept of similarity could be

defined in a satisfactory way. He notes that in very particular cases, such as a series of

sinusoidal tones, one could plausibly characterize the stimuli along a particular physical

dimension. However, he raised strong reservations about whether such an approach could

be generally useful, noting that the nature of psychological dimensions was “utterly obscure

in complex visual forms” (Attneave, 1950, pg. 519).

Research into the nature of psychological attributes around this time was dominated by a

few types of experimental paradigms. Many studies used a paired-associates design in which

a relatively small set of stimuli (usually 9 or so) are designed to vary on a small number

of dimensions (e.g., a set of circles with varying diameter, or a set of swatches of the same

color that vary in saturation and brightness). Each stimulus is associated with a unique,

distinct response (sometimes a verbal label, e.g., the digits “one” through “nine”, with the

assignment of stimulus to label randomized and often counterbalanced across participants).

The stimuli are then presented to the participant, and the verbal responses are collected and

used to create confusion matrices containing the conditional probabilities of making a given

verbal response upon the presentation of a particular stimulus.

Shepard (1957, 1958, 1987), working with human and non-human animal data from experi-

ments using this paired-associates design, developed a technique to infer the coordinates of

the stimuli in an Euclidean representational space, on the basis of the confusion errors made

by the participants in these experiments. In this context a confusion error is observed when

the participant produces the incorrect response term for a given stimulus. For example, a

participant might see a swatch of color and say ”seven”. If the correct label for that swatch

was ”three”, this would be taken as evidence that the swatches labeled ”seven” and ”three”

are close to one another in the representational space. Shepard proposed that the Euclidean
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distances between these coordinate points could provide the underpinnings for a well-defined

measure of similarity. He promoted a framework in which two identical stimuli (with distance

0 between them) would be assigned a similarity of 1, and that similarity would decline as a

negative exponential function as the distance between two stimuli increased (as described in

the previous section).

This technique gave impressively consistent results across a variety of stimulus types includ-

ing shapes, spectral hues, phonemes, free-form figures, and Morse code signals (Shepard,

1987). Over the decades, the assumption that similarity declines as a negative exponential

function of distance has been embedded in a variety of modern memory models (Nosofsky,

1986; Kahana and Sekuler, 2002; Nosofsky et al., 2011). However, the general utility of the

paired-associates design for characterizing the psychological coordinates of a given set of

stimuli is limited, as one is limited by the number of stimulus-to-label associations a given

participant can remember.

Other early work used a judgment-based approach to characterizing similarity. In these

studies participants were asked directly to make judgments of similarity on a set of stimuli

using some variant of the method of triads (Torgerson, 1958). Stimuli would be pulled from

the larger set three at a time, and the participant would indicate which two were more

closely related. These judgments were used to estimate the pairwise distances between all

the stimuli in the set. These values were organized into a distance matrix, which could

then be converted into a set of coordinate representations using a multidimensional scaling

technique (Shepard, 1980). These multidimensional scaling techniques allow one to specify

how many dimensions the coordinate representations should have, and the algorithm finds

coordinates for the stimuli that preserves the original inter-stimulus distances as well as

possible.

The coordinate representations constructed by this judgment-based approach generally showed

good agreement with those constructed using Shepard’s confusion-based approach, despite

the methodological differences between the two. Unfortunately, the general utility of the

11



method of triads is also limited in terms of the number of stimuli that can be characterized:

The number of comparisons necessary to properly estimate the full set of pairwise distances

explodes combinatorially as the number of stimuli increases. Despite this limitation, the

method of triads is still used to characterize representational similarity, when the stimu-

lus set is small enough to make the approach tractable (Hutchinson and Lockhead, 1977;

Yotsumoto et al., 2007).

Around the same time, Osgood et al. (1957) developed a variant of the method of triads

that is worthy of separate note, as it presaged a number of modern techniques designed

to characterize the meanings of words in terms of their coordinates in a high-dimensional

representational space. Participants in one of these experiments were given a set of target

words, and were asked to rate each word on a series of scales, where the two words on either

side of the scale were chosen to be opposite in meaning. The participant used the scale to

indicate which of the two scale words the target word was more closely related to. In one of

the group’s initial experiments, 100 participants made judgments on 20 target words (exam-

ple target words included symphony, baby, father, god, and sword) and 50 scales (example

judgment scales included good-bad, large-small, beautiful-ugly, calm-agitated, sharp-dull,

brave-cowardly, and hard-soft). A variety of factor analysis techniques were used to estimate

the coordinates of each target word in a semantic representational space, where differences

in meaning between two words was a function of the distance of their coordinates in this

space. As such, this is perhaps the earliest vector space model of semantic meaning; more

recent approaches will be described in a later section, and in Chapter 3.6.

3.2 Stimulus sampling theory.

Of all these early attribute-based theories, perhaps the most influential was stimulus sampling

theory (SST), as developed by Estes and colleagues in the 1950s (Neimark and Estes, 1967).

SST was developed by a number of theorists applying it to a variety of experimental scenarios,

which led to a healthy number of variants of the basic theory. Some core aspects of the
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theory can be communicated by describing how it might be applied to a simple conditioning

experiment. Consider an experiment in which a tone is played for a rat, following which a

shock is delivered through the floor of a cage, eliciting a freezing behavior. SST envisions

the cognitive system of the rat as comprised of a great many representational elements,

each of which can be in an active or inactive state (sometimes referred to as available and

unavailable states). Some of these elements might correspond to the perceptual experience

of the tone. There is a stochastic component to SST. When the tone is played on a given

trial, a randomly chosen subset of the tone elements will become active, but others will be

inactive. On another trial, when the same tone is played, a different random (but likely

overlapping) subset of tone elements will become active. Other aspects of the experience are

assigned different sets of elements: shock-related elements, cage-related elements, and even

response-related elements. Each of these populations behaves similarly; on a given trial only

a subset of each type of element will be in an active state, reflecting natural variability in how

the tone is perceived, how the response is executed, and what aspects of the environment

are attended to. On each trial, learning occurs in an all-or-none fashion: Elements in an

active state become associated with one another. Returning to the conditioning aspect of the

experiment, the probability of observing freezing behavior (if the tone is presented without

the shock) is simply the proportion of total tone elements that were successfully associated

with the freezing-response elements.

Stimulus sampling theory gave theorists a framework in which to think about the structure

and dynamic properties of cognitive representations. By this theory, all aspects of inner

mental life could be thought of as bundles of attributes, simple representational elements

with simple dynamical properties. In contrast to the other ideas reviewed in this section, SST

was not generally used to model the representational structure of particular stimuli. Rather,

it was designed to simulate and predict the observable behavior of the organism (sometimes

rodent, sometimes human, sometimes other animals) in a variety of experimental conditions.

Rules regarding the activation or availability of elements were paired with rules regarding

the formation of associations between different classes of elements. Together, these rules
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specified a powerful learning system which could be applied to a wide variety of experimental

phenomena.

Later work by Bower developed a number of these representational ideas. He developed

the idea that studying an item elicits a multiattribute representational code, and derived

some basic predictions of a memory model with such representations at its heart (Bower,

1967). He also built upon the idea that different subsets of attributes could be activated

upon different encounters with a stimulus or situation (Bower, 1972). Here, he proposed

that if some contextual process caused a gradual change in which representational elements

were in the active state, the system could create a gradually changing representational code

that could be stored as part of a memory, and used to make judgments about the temporal

order and recency of memories. The nature of temporal memory attributes will be explored

further in Chapter 3.2, Memory for time.

4 Empirical approaches to characterizing memory at-

tributes

Underwood (1969) made an early attempt to enumerate some of the different classes of

attributes that might comprise a given memory, and to review the proliferation of empirical

studies examining memories in terms of these multidimensional characteristics. Evidence

was accruing for the theoretical importance of temporal attributes and spatial attributes,

attributes specifying frequency, modality, and orthographic properties of studied items (as

the experimental literature of the time was dominated by list-learning studies of verbal

materials), as well as nonverbal attributes specifying, e.g., affective properties of studied

material (see Chapter 3.7, Affective memory). Underwood left open the possibility that

contextual attributes were also stored as part of a given memory, a theoretical seed that

certainly blossomed over the following decades (see Chapter 5.12, Context reinstatement).
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4.1 Release from proactive interference.

Over the years, a number of approaches have used patterns of behavioral performance on

memory tasks to infer the representational structure of studied material. Shepard’s work,

described above, examined the patterns of errors (confusions) in a paired-associates task

to infer this structure. In later decades, researchers used the pattern of recall failures on

a delayed recall task (known as the Brown-Peterson paradigm; Brown, 1958; Peterson and

Peterson, 1959) to similar effect (Wickens, 1970; Wickens et al., 1976). In a representative

version of this task, a participant studies a short list of words sampled from a particular

taxonomic category. After a short retention interval (during which a distracting task is

performed), the participant recalls the items from the most recent list. If a series of study

lists all sample study items from the same taxonomic category, a proactive interference

effect is observed. Performance decreases as a function of the number of preceding lists

containing items from the same category, reaching an asymptote after several same-category

lists have been studied. If the next list samples items from a new category, performance

increases, a phenomenon referred to as release from proactive interference. The drop in

recall performance across trials was proposed to be due to interference from other similar

memory traces, though there was debate as to whether the interference arose during study

or recall (Greene, 1992).

Wickens and others showed that the degree of release was sensitive to the similarity of the

items on successive lists, such that a larger drop in similarity would show a greater perfor-

mance benefit following the shift. For example, a shift from farm animals to vegetables would

yield a greater performance increase than a shift from farm animals to wild animals. A num-

ber of studies used the technique to characterize the representational similarity of different

classes of study materials, by examining the relative effectiveness of shifts in characteris-

tics like taxonomic category, grammatical category, and physical properties like background

color on memory performance (as reviewed by Wickens, 1970). In these studies, if a shift in

a particular characteristic led to a substantial release from proactive interference, this was
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taken as evidence that the property being shifted was stored as part of the relevant memory

trace, and the degree of release was taken to reflect the psychological distance traversed

when that characteristic was altered.

4.2 Encoding variability.

Stimulus sampling theory, as described above, proposed that different encounters with the

same stimulus could elicit different encoded representations of the stimulus. This idea of

encoding variability was developed by Martin (1968) to explain item-level effects in paired

associates learning. He proposed that the representations elicited by a less meaningful stim-

ulus could vary quite a bit from encounter to encounter, which explained (among other

things) why these stimuli were harder to learn than more meaningful stimuli. Both Light

and Carter-Sobell (1970) and Tulving and Thompson (1973) examined the idea that one

could experimentally manipulate the encoded attributes of a to-be-remembered word in

ways that would affect its later memorability. For example, consider an experiment in which

a participant studies a set of paired associates where the first term biases the semantic in-

terpretation of the second term (e.g., traffic-jam). The participant is told that they only

have to remember the second term. Later, when they are tested, some of the pairs have

been modified, with a new first term that emphasizes a different meaning of the second

term (e.g., strawberry-jam). Even if the participant is told to only focus on the second

term and ignore the first, they will still be worse off trying to recognize the second term,

relative to a scenario in which the second term is presented alone, or alongside a word that

emphasizes the original meaning. Tulving and Thompson (1973) referred to this as encoding

specificity : The circumstances of study create a particular stored representation, and that

memory will be more accessible if the encoded test item is representationally similar to the

stored memory. Encoding specificity is related to the idea of transfer appropriate processing

(TAP; Morris et al., 1977; Blaxton, 1989), whereby an item will be better remembered if the

mental operations engaged at test are similar to those engaged at study.
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4.3 Source memory and context change.

The law of redintegration, described in the introduction, proposes that all of the aspects of

an experience become associated with one another. A consequence of this is that memories

are content addressable: One can retrieve a given memory given just a subset of its attributes

as a prompt. A corollary of this is that stored memories contain a variety of details from

the original experience, often referred to as source characteristics (Hilgard, 1965; Schacter

et al., 1984; Johnson et al., 1993). When a person retrieves a memory of a particular

experience, source characteristics are often retrieved as well, even if they are not specifically

demanded by the task at hand. Memory for many types of source characteristics have been

examined in the literature. Visual source characteristics might specify the font a word was

presented in (Kirsner, 1973), while spatial source characteristics might specify where on the

page an interesting detail was encountered in a book (Rothkopf, 1971). Auditory source

characteristics might specify the specific sound of a person’s voice (Geiselman and Bjork,

1980). Johnson et al. (1993) provide an excellent review of the variety of source characteristics

studied in the literature, and the cognitive processes engaged when attempting to determine

the source of a given memory.

The profligate nature of association formation when a given memory is formed has another

consequence: The accessibility of a given memory can be strongly context dependent. The

context dependence of memories can be powerfully experienced when you revisit a town

or city formerly lived in, after an absence of several years. The flood of memories elicited

by the sights and sounds of your former home can be quite powerful (Smith, 1988). The

context-dependence of memories has been used experimentally to determine which contextual

attributes are actually stored as part of a memory. If the presence or absence of a particular

contextual feature affects the accessibility of a given memory, this is taken as evidence that

this feature was stored as part of the memory trace. A classic experiment by Godden and

Baddeley (1975) demonstrated the context dependence of memories nicely. Participants

were SCUBA divers. They studied a list of words in one of two environments, on dry land
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or at a depth of 20 feet underwater. After a suitable retention interval, participants were

tested, either in the same environment, or in the other environment. Memory performance

was reliably context dependent. The participants remembered the list better when the

study environment matched the test environment, suggesting that participants had formed

memories that included environmental attributes. A sizable literature explores the varied

implications of the context dependence of memories, and the methodological conditions under

which these effects are more or less likely to be observed (Godden and Baddeley, 1980; Smith,

1988; Bjork and Richardson-Klavehn, 1989).

5 Memory attributes in computational models.

The language of various attribute theories has suffused nearly all aspects of memory theory,

and even non-computational approaches tend to use terminology drawn from these theo-

ries. For example, the term ’encode’ has become practically synonymous with ’study’ in the

memory literature, with the former term suggesting that a representational code has been

constructed reflecting the identity of that item. Computational models can still show strong

influences from attribute theories without explicitly simulating the structure of individual

representations. As noted, many implementations of stimulus sampling theory involve the

derivation of equations to predict behavior on the basis of an assumed underlying attribute-

based representation, but the representations themselves are usually not simulated. However,

many computational models of memory are explicitly and fundamentally attribute theories.

They define a vector space for the representations of studied items, and the cognitive pro-

cesses implemented by the model operate on these representations. Many of the models

covered in upcoming chapters (e.g. Chs. 5.1–5.3, among others) are of this type. In this

section, we give a few illustrative examples of how attributes are used in different modeling

frameworks.
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5.1 Instance theories.

In the clinical literature on memory disorders, the episodic memory system is often likened

to a file cabinet (Budson and Solomon, 2015). Each memory corresponds to a file, and

the memory storage operation involves adding new files to the file drawer. Instance theory

models of memory operate much in this way. Influential instance theoretical models of

memory include MINERVA & MINERVA II (Hintzman, 1984, 1988), REM (Shiffrin and

Steyvers, 1997), ITAM (Logan, 2002), and GCM (Nosofsky, 1987). Here, we describe general

properties of instance theories that tend to be true of many specific models.

As in any attribute-based memory model, a vector representation is constructed for a to-be-

remembered experience, this is the file in the file cabinet analogy. In terms of the theoretical

primitives described in the introduction, the numbers composing this vector are the elements

of an instance theory. Once stored in the file cabinet, the vector becomes a memory trace.

The file drawer itself is a matrix, where each memory trace is assigned a row. The storage

operation simply involves copying the representational vector into this memory matrix. In

some models this operation can be error-prone, allowing certain features to be stored incor-

rectly (Shiffrin and Steyvers, 1997). Regardless of the fidelity of the storage operation, each

memory trace is given its own row, so the number of rows in the storage matrix grows as

new memories are formed.

There are many ways to probe memory in different instance theoretical models; this topic

receives further attention in Chapter 5.2 (Global Matching Models). A retrieval cue is simply

a representational vector that is used to probe the memory matrix. This probing operation

involves comparing the retrieval cue to each of the memory traces stored in the file drawer

and calculating their representational distance or similarity. The degree of match between

the probe and the contents of memory can then be used to determine whether the probe is

familiar, retrieve a particular memory or a blend of memories, or inform other memory-based

decisions.

Above, we refer to the set of numbers comprising a representational vector as elements,
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which raises the question: Where are the associations in an instance theory? In one sense,

all of the elements that comprise a single memory trace are automatically associated with

one another when they are stored as part of the same memory trace. As such, an instance

theory can capture the association between a pair of items in a paired associates task by

creating a single memory trace that contains the representations of both items (Hintzman,

1988; Shiffrin and Steyvers, 1997). Another approach involves using subsets of elements to

specifically represent the associative features of a study event. In a paired associates scenario,

these associative features would be unique to the specific pair of items being studied, and

can be generated using a variety of mechanisms (Murdock, 1982; Metcalfe, 1985; Criss and

Shiffrin, 2005).

5.2 Connectionist models.

Generally speaking, connectionist models draw inspiration from neuroscientific theories of

neural network function (Rumelhart et al., 1986). The elements in these models are often

meant to correspond to neurons, or populations of neurons, and the associations between

these elements are usually referred to as synapses. These synaptic connections allow the

neurons to communicate with one another. Neural network models can vary substantially

in terms of how closely they attempt to capture the biophysical properties of the nervous

system. Many models are highly abstract, with the activation state of a neuron and the

strength of a synapse each specified by a single number.

Connectionist models are fundamentally representational, in that the pattern of activation

states across the neurons in a network is itself a kind of representation (although whether

those activation states are meant to be interpreted as attributes will depend on the case in

question). Subsets of neurons with distinct functions are often referred to as layers, each

of which defines a vector space of possible activation states. For example, an input layer

may represent the perceptual characteristics of stimuli, and an output layer may represent

the different responses a participant might make. The connections between neurons can
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be autoassociative (connecting the neurons in a layer to one another) or heteroassociative

(connecting the neurons in one layer to those in another layer). Autoassociative connections

can allow a particular representation to become stable, whereby activating an incomplete

or noisy version of the representation will allow the network to recover the original version

(Hopfield, 1982). Heteroassociative connections between two layers create a mapping be-

tween the two vector spaces–a particular pattern A in one layer will elicit a partner pattern

A′ in a connected layer, given a particular configuration of the synapses connecting the two

layers (Anderson et al., 1977).

Associations in connectionist models are most obviously implemented in the synapses, but

as with instance theoretical models, associative information can also be stored in the repre-

sentations themselves (i.e., in the activation patterns of particular neurons). An example of

this is the conjunctive encoding explored in neural network models of hippocampus, where

the activation of certain neurons can reflect the co-occurrence of particular combinations of

environmental features (O’Reilly and McClelland, 1994).

Memory traces in neural networks are stored in the synaptic weights connecting the neurons

to one another. The equations determining how synaptic weights change as a function of

experience are often referred to as learning rules, and a wide variety of learning rules have

been proposed and examined over the years. A particular synapse connects a pre-synaptic

neuron to a post-synaptic neuron. For most learning rules, the strength of the synapse is

influenced by the activation states of both neurons. Simple learning rules include varieties

of unsupervised Hebbian learning, where the synaptic strength increases if the pre- and

post-synaptic neurons are simultaneously active, and decreases otherwise.

In some cases, learning involves associating a particular stimulus representation (in the input

layer of a network) with the representation of a particular response (in the output layer of

the network). In this scenario, a supervised or error-driven learning rule may be used. If the

activation of the neurons in the output layer matches the target output representation, there

is no error, and no learning takes place. However, if there is a discrepancy between the repre-
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sentation in the output layer and the target representation, this creates an error signal that

is used in the synaptic learning rule. If successful, the changes in synaptic weights will cause

the output representation to more closely resemble the target representation (Rumelhart

et al., 1986; Trappenberg, 2009).

An interesting case arises when the input layer (representing a presented stimulus) and the

output layer (representing a target response) are not connected directly, but rather are sepa-

rated by one or more intervening layers (often referred to as hidden layers). An error-driven

learning rule known as backpropagation can be used to learn an appropriate set of associative

weights to map from input patterns to target output patterns. This causes the network to

develop internal representations in the hidden layers that enact the transformation of input

pattern to output pattern. These hidden representations contain internal attributes that

are not specified by the modeler, but which develop over the course of learning. Influential

connectionist models of the development of semantic knowledge relate the dynamics of these

internal representations to differences in behavioral performance on semantic tasks across the

lifespan and in populations with memory disorders (McClelland et al., 1995; Rogers et al.,

2004).

5.3 Semantic models.

Some of the earliest attempts to characterize the structure of human semantic memory

treated stored knowledge as a network, using mathematical formalisms from graph theory. In

this approach, each word is assigned to a node, and the attributes of the word are embedded

in the links between nodes (Collins and Quillian, 1969; Collins and Loftus, 1975). These links

were often referred to as labeled relations, in that they had to specify the kind of relationship

between the two nodes (e.g., bird and wing would be connected by a “has a” link). The

network approach can be contrasted with the vector-based approach described earlier in this

chapter, in which each word is assigned a representational vector composed of a number of

attributes which specify its meaning. The vector-based approach can be roughly divided into
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two classes of models: those using hand-coded representations (Smith et al., 1974; Tversky,

1977), and those deriving the representations from a large corpus of text. Early development

of these models focused on capturing choice and response time data from simple semantic

judgment tasks, including judgments of category membership (e.g., A butterfly is an insect ;

Smith et al. 1974) and judgments as to whether a given proposition is true or false (e.g.,

Many arrows are sharp; Glass et al. 1974).

Latent Semantic Analysis (LSA; Landauer and Dumais, 1997) provides a representative ex-

ample of a corpus-based model of semantic knowledge. The research team used a large text

corpus pulled from an encyclopedia meant for American students. The corpus was comprised

of thousands of documents (encyclopedia entries), each of which contained a set of words.

This was used to create a large co-occurrence matrix, where each row corresponded to a

unique word from the corpus, and each column corresponded to a document. Each entry in

the matrix was a number, which was a function of the number of times the word appeared in

that particular document. Then a matrix algebraic technique called singular value decompo-

sition was used to reduce the dimensionality of this matrix (specifically, reducing the number

of columns) while preserving to some extent the similarity structure of the row vectors to

one another. The result of this process is a word embedding, a set of vector representations

of (potentially) every word in a lexicon. Landauer and colleagues showed that the word

representations produced by LSA could be used to perform a synonym-based subtest of the

Test of English as a Foreign Language (TOEFL), by choosing the answer with the largest

cosine similarity to the target word. The algorithm performed at similar levels as applicants

to U.S. colleges from non-English-speaking countries.

As in Osgood’s approach, described above, these models treat words as vector representa-

tions, points in a high-dimensional representational space, given meaning only with respect

to their relationships to other words. Indeed, for many purposes, the representational vec-

tors themselves are replaced with a matrix containing the pairwise similarities between the

vectors, often using a cosine similarity score to calculate similarity. Many modern natural
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language processing frameworks have the same basic structure as LSA, in the sense that a

large text corpus is processed in some way to construct vector representations (Lund and

Burgess, 1996; Jones and Mewhort, 2007; Griffiths et al., 2007; Recchia and Jones, 2009;

Pennington et al., 2014).

These corpus-based vector space models of semantic structure allow one to construct repre-

sentational vectors for any word that appears in the text corpus. As with hidden layers in

multi-layer connectionist networks, the individual attributes may have no obvious meaning.

Rather, the pattern of pairwise distances between word representations carries the impor-

tant information. A key question that arises is whether these representations correspond in

a meaningful, systematic way to the unobservable cognitive representations of words that

dwell within a given person’s semantic memory. One way to address this question is to

test whether one can use the representational vectors to predict aspects of the person’s be-

havioral performance on tasks that involve those words. This question has been answered

affirmatively; meaningful and reliable variability in behavioral performance on a variety of

tasks can be predicted, as reviewed in the citations referenced above. Chapter 3.6 (Semantic

attributes) will delve deeper into these issues.

6 Representational analysis in cognitive neuroscience.

Attneave (1950) in his early review of psychological similarity noted that similar stimuli

“might achieve identical, or partially identical, neural representations.” He based this state-

ment in part on early work on neural network theory by Hebb (1949) and McCullough and

Pitts (1943), which developed the idea that neurons could be thought of as simple processing

elements sensitive to specific attributes of a stimulus, and capable of altering their connec-

tivity structure to learn from experience. These ideas were buttressed by neurophysiological

studies establishing that individual neurons could be selectively sensitive to particular details

of an animal’s sensory environment (Lettvin et al., 1959; Hubel and Wiesel, 1962), as well

as to more complex higher-order properties of stimuli (Gross et al., 1969).
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The ability to record brain activity, be it the vascular response of neural tissue in response

to metabolic demands, or the electrical fluctuations of neural circuitry, opened up new pos-

sibilities in our ability to find the neural correlates of unobservable memory representations.

Certainly not all neuroscientific investigations took a representational mindset. Early lines

of work using functional magnetic resonance imaging (fMRI), for example, focused on the

differential engagement of particular regions in different variants or conditions of a memory

task (e.g., Buckner et al., 2000). Work examining event-related responses in scalp EEG took

a similar approach, identifying time-locked voltage fluctuations sensitive to task characteris-

tics (Luck, 2005). These approaches allowed researchers to infer the engagement of particular

regions and particular waveforms in memory-related processes, but only rarely gave insight

into the nature of neural representations or the coding of particular attributes.

Early attempts to characterize neural signals in terms of their multivariate representational

structure includes work by Freeman and colleagues on the topographical analysis of elec-

trophysiological responses in the olfactory system to different odors (Freeman, 1975, 1978),

and work by Suppes and colleagues classifying individual word identities from scalp EEG

signal (Suppes et al., 1997, 1999). It should be noted that in later work, Freeman rejected

a representational interpretation of these topographic patterns, on the basis of a number of

inconsistencies with the predictions of representational theories (Freeman and Skarda, 1985,

1992).

A groundbreaking study by Haxby et al. (2001) showed that the taxonomic category of

visual images could be reliably decoded from the distributed pattern of brain activity across

ventral temporal cortex, recorded using fMRI. This demonstration that fMRI signal could

be profitably characterized by multivariate analysis spurred a great many studies examining

the representational characteristics of brain activity (Carlson et al., 2003; Kamitani and

Tong, 2005; Haynes and Rees, 2005; O’Toole et al., 2007; Kriegeskorte et al., 2008). The

analysis techniques brought to bear in these studies were drawn from machine learning and

statistics (Hastie et al., 2001; Duda et al., 2001), and these approaches are usually referred
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to as multivariate pattern analysis (MVPA) and representational similarity analysis (RSA)

(Norman et al., 2006; Kriegeskorte et al., 2008; Haxby et al., 2014). MVPA applications

often assign distinct category labels to different brain states, and use pattern classification

algorithms (e.g. logistic regression) to learn the mapping from brain state to category label.

In contrast, RSA applications often take brain states and calculate the pairwise distances

between them, constructing a representational distance matrix. Analysis can then focus

on the structure of the representational distance matrix, for example examining whether

matrices derived from different species have similar structure (Kriegeskorte et al., 2008),

or examining whether matrices show meaningful correspondence to matrices derived from

different theoretical models of semantic structure (Clarke and Tyler, 2014).

The development of neural representational analysis techniques has been beneficial to cog-

nitive neuroscientific studies of memory, as this approach allows better contact between

attribute-based cognitive theories of memory, and the multivariate neural signals recorded

during memory task performance. Polyn et al. (2005), using fMRI, showed that category-

specific patterns of neural activity observed while a participant studied a list were reactivated

during memory search, in the seconds leading up to the successful retrieval of one of the stud-

ied items. This work extends a substantial body of studies establishing that neural activity

patterns observed when an episode is encoded are reactivated when that episode is later

retrieved (Danker and Anderson, 2010). Lewis-Peacock and Postle (2008) used similar cate-

gorized stimuli to examine the dynamics of these representations during a working memory

task, finding evidence that long-term memory representations support the short-term reten-

tion of information.

A wealth of other studies have used representational techniques to examine neural activity

in terms of its attributes, and some of these have made impressive contact with attribute-

based computational models. For example, a study by Mack et al. (2013) examined neural

activity patterns in a categorization task and found that the structure of these represen-

tations were more consistent with an instance theory model that stored separate memory
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traces for different studied category exemplars, as opposed to a model that stored proto-

type representations averaging together the instances from a given category. A study by

LaRocque et al. (2013) examined neural representational structure in relation to predictions

from connectionist models of medial temporal lobe cortex and hippocampus (McClelland

et al., 1995; Norman and O’Reilly, 2003). These models propose that representational codes

in cortical regions should preserve the similarity structure of studied materials, but that pat-

tern separation mechanisms in hippocampus should distort this representational structure.

Consistent with these models, LaRocque et al. (2013) found that across-item similarity in

cortex predicted subsequent memory performance, but this pattern was flipped in hippocam-

pus, where more distinctive item patterns predicted successful performance. Other studies

have delved into the semantic structure of neural activity, the dynamics of category learning,

and the formation and utilization of associations between arbitrarily paired items (Weber

et al., 2009; Chadwick et al., 2016; Davis and Poldrack, 2014; Schlichting and Preston, 2015;

Rissman and Wagner, 2012).

7 Conclusion.

Attributes and representations are central to modern theories of memory. There is wide

concordance amongst otherwise heterogeneous theoretical approaches regarding the utility

of attributes in constructing a theory of memory. Experiences are encoded into represen-

tations that reflect the characteristics and circumstances of the surrounding world. These

representations are stored, retrieved, and manipulated by the cognitive system. Mathe-

matical tools drawn from linear algebra have been of great utility in the development of

attribute theories of memory. In these approaches, representations are treated as vectors,

where the particular configuration of values in a vector establishes the attributes of the

memory. These basic principles have been used to establish mechanisms for fundamental

memory phenomena, such as the sensitivity of memory to the circumstances of encoding,

and the context-dependence of memory retrieval. These representational approaches have
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opened new doors in cognitive neuroscientific investigations of memory, allowing theorists to

make contact between attribute theories of memory and the neural signals recorded during

a wide variety of memory tasks.
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