
NeuroCognitive Memory Search Toolbox Demonstration 
 
This demonstration shows how the NCMS modeling framework was used to 
allow model parameters to vary according to normalized fMRI BOLD 
reponses recorded from participants during a free-recall task, as 
reported by Kragel et al. (2015). 
 
Kragel, J. E., Morton, N. W, and Polyn, S. M. (2015) Neural activity in 
the medial temporal lobe reveals the fidelity of mental time travel. 
Journal of Neuroscience, 35 (7), 2914-2926. 
 
Note: Part of this demonstration requires the use of the Behavioral 
Toolbox (release v1.01), available from the University of Pennsylvania 
(http://memory.psych.upenn.edu/Behavioral_toolbox). 
 
 
%% 
% Baseline 
 
 
The first part of this tutorial reproduces the likelihoods of parameter 
fits to models examined by Kragel et al. (2015).  We start with the 
neurally-naïve baseline model, in which parameter values were evaluated 
by the model’s ability to produce observed sequences of freely-recalled 
items.  In this baseline model, parameters were fixed across all 
individual recall events, with no access to neural signals from any 
brain region. 
 
% Evaluate likelihood of baseline model 
[param_info_base, fixed] = search_param_KragEtal15('base'); 

 
The search_param_KragEtal15 function provides the organizational 
information of the searched (param_info_base) and fixed (fixed) 
parameters for the baseline model, as specified by the input string 
‘base’.  Since most parameter search algorithms simply operate on a 
vector of values, the param_info_base structarray allows both the model 
and the user to interpret which value corresponds to which parameter in 
the model.  The parameters in param_info_base were optimized during the 
search process (particle swarm optimization in the case of Kragel et 
al., 2015), and the parameters in the struct fixed were held constant 
during the optimization.  In general, the search_param_KragEtal15 
function can return a number of different variants of the search 
parameters based on the given input string (i.e., ‘base’, ‘tr’, ‘rs’, 
‘joint’; see Kragel et al., 2015, for details). 
 
 
load('data_KragEtal15.mat','data'); 
 
Here we load the observed behavioral data from Kragel et al., 2015 (in 
the variable data).  Of particular use to the model is the matrix of 
recall sequences for each trial for each participant (data.recalls).  
Each row of data.recalls corresponds to recalls made on a single trial 
for a single participant, with each value indicating the original list 
position of the recalled word (and 0 indicating no more recalls were 
made). 
 
 
fstruct = fixed; 



fstruct.param_info = param_info_base; 
fstruct.f_logl = @cmr_general; 
fstruct.data = data; 
fstruct.neural_mat = []; 
 
Next we gather all the information the model will need to operate in a 
struct variable named fstruct, initialized to include the fixed 
parameters in fixed, then extended with the searched parameter 
information (names and ranges) of the optimized parameters from 
param_info_base.  We include the behavioral data, to give the model 
access to the observed recall sequences generated by participants in 
the lab during the free-recall task.  This allows us to evaluate the 
log-likelihood (or log-transformed probability) of observing a given 
set of recall sequences given a specified modeling framework.  Here, we 
use a variant of the Context Maintenance and Retrieval modeling 
framework (Polyn et al., 2009) to observe the likelihood that this 
specification of the model would generate the observed recalled 
sequences.  The particular modeling framework used is specified in 
fstruct.f_logl.  Specifically, this provides a function handle to the 
function that will be generating the log-likelihood scores (in this 
case, cmr_general).  Note that since parameters are not influenced by 
any neural signal during the model’s evaluation, the neural_mat field 
of fstruct is left empty. 
 
 
load('param_KragEtal15.mat','param_vec_base'); 
 
We now have the necessary information gathered to evaluate the 
likelihood of any set of parameters.  Here, we load the optimized 
parameter values for the baseline model as determined by the particle 
swarm optimization, as saved in the param_KragEtal15.mat file.  The 
specific best-fitting parameters for the baseline model are in the 
variable param_vec_base, as reported in Kragel et al., 2015.  Note that 
this variable is just a vector of values, which must be interpreted 
using the information contained in param_info_base.  Also note that 
this tutorial does not show the actual parameter search process, but 
rather provides the result of the performed optimization. 
 
 
LL = eval_param_KragEtal15_base(param_vec_base, fstruct) 
 
Using the parameter values specified in param_vec_base, we can 
determine the likelihood that the cmr_general model–evaluated using 
these specific parameter values–would generate this observed set of 
recall sequences.  (These values are log transformed for ease of 
interpretation, since such a probability out of any number of 
potentially possible recall sequences will be generally quite low).  
This eval_param_KragEtal15_base function unpacks the parameters from 
the values in the vector param_vec_base (using the information in 
param_info_base) then evaluates the specified model in accordance with 
the provided data.  Executing this portion of the tutorial should 
reproduce the likelihood for the neurally-naïve baseline model reported 
in Table 1 of Kragel et al., 2015. 
 
 
 
%% 
% Joint 



 
Having produced the likelihood score for the neurally-naïve baseline 
model, here we produce the likelihood score for a model that uses the 
neural signal to inform the value of a specified parameter for each 
recall event.  Specifically, we show the variant of the CMR model that 
allows both the contextual reinstatement parameter (βrec) and the 
stopping parameter (ξd) to be linearly scaled by a neural signal as 
measured at each recall event (in this case, normalized BOLD activity 
from a cluster of voxels as specified in Kragel et al., 2015). 
 
% Evaluate likelihood of neurally-informed joint model 
[param_info_joint, fixed] = search_param_KragEtal15('joint'); 
 
As this model uses two more parameters, each used to scale the neural 
signal’s influence on one of the parameters of interest, we use a 
different parameter specification, by providing the ‘joint’ string to 
search_param_KragEtal15.  This gives us the new parameter 
specifications in param_info_joint (as well as the fixed parameters). 
 
 
load('data_KragEtal15.mat','data'); 
load('neural_mat_KragEtal15.mat','neural_mat_joint'); 
 
We load the observed behavioral data as before, but here we also load 
the neural data.  The neural_mat_KragEtal15.mat file contains matrices 
of the neural signal for each recall event in the behavioral 
data.recalls (and 0 elsewhere).  Specifically, here we are interested 
in the normalized BOLD activity in the cluster of voxels found to be 
informative to both model processes examined by Kragel et al. (2015), 
so we use the neural_mat_joint variable. 
 
 
fstruct = fixed; 
fstruct.param_info = param_info_joint; 
fstruct.f_logl = @cmr_general; 
fstruct.data = data; 
fstruct.neural_mat = neural_mat_joint; 
 
We collect the relevant information needed by the modeling framework, 
as before, but here we also provide the measured neural signal for each 
recall event in fstruct.neural_mat. 
 
 
load('param_KragEtal15.mat','param_vec_joint'); 
 
We then load the vector of optimized parameters, as determined by a 
particle swarm optimization.  These values are reported for the joint 
model in Kragel et al., (2015), and can be interpreted using the 
information in param_info_joint. 
 
 
LL = eval_param_KragEtal15_joint(param_vec_joint, fstruct) 
 
We are then able to evaluate this new set of parameters, while also 
using the neural signal.  This eval_param_KragEtal_joint function, in 
addition to unpacking and preparing the parameter information as in the 
baseline model, creates a matrix of individual parameter values for the 
contextual reinstatement parameter (βrec) and the stopping parameter (ξd) 



for each recall event.  This value is determined by base values for 
each parameter, and linearly scaled by an additional ν parameter 
according to the value of the measured neural signal at that particular 
recall event.  This var_param variable informs the model that this 
“changing” variable value should be used when recall events are 
evaluated, thus affecting the likelihood of recalling individual 
events, which affects the likelihood of recall sequences, and thus the 
likelihood of the entire set of observed recall sequences.  This 
portion of the tutorial should reproduce the likelihood score for the 
joint neural model reported in Table 1 of Kragel et al., 2015. 
 
 
 
 
 
 
The remainder of this tutorial focuses on the generation of synthetic 
data according to the specifications of the model.  The same core 
functions are used to run the internal processes of the model 
(coordinated by the cmr_general function), but rather than evaluating 
probabilities of recall events, synthetic recall events are sampled 
based on those same probabilities (including the probability of 
stopping). 
 
 
%% 
% Behavioral Data 
list_length = fstruct.data.listLength; 
figure(1) 
summary_plots(data.recalls, data.subject, list_length); 
suptitle('Behavioral Data') 
  
First we show how observed behavioral data exhibits the standard free-
recall phenomena, by examining (a) the serial position curve (recall by 
list position), (b) probability of first recall, as a function of list 
position, (c) lag-conditional response probability, (d) stop 
probability as a function of output position.  These measures are 
reported in Kragel et al. (2015).  Note that summary_plots requires the 
use of the Behavioral Toolbox (release 1.01) as described in the main 
README file for this toolbox.  Additionally, earlier versions of MATLAB 
may not include the suptitle function. This line is mainly used to 
identify multiple figures, and this it can be commented out for ease of 
execution if necessary. 
 
 
%%  
% Generate synthetic data  
  
% Generative simulation 1: Neurally-naive baseline model. 
fstruct.param_info = param_info_base; 
fstruct.neural_mat = []; 
fstruct.n_rep = 10; 
 
Here we prepare to generate data using the neurally-naïve baseline 
model.  Once again we prepare the information the model needs to 
operate, specifically information about which value in the 
param_vec_base vector corresponds to which parameter (as indicated by 
param_info_base).  We also set the model to generate 10 times the 



number of observed trials (as specified by n_rep), in order to get a 
more stable estimate of average model performance. 
 
  
seq_base = gen_KragEtal15_base(param_vec_base, fstruct); 
  
figure(2) 
model_subj = ones(size(seq_base,1),1); 
summary_plots(seq_base, model_subj, list_length) 
suptitle('Neurally-Naive Baseline') 
 
We use the generative version of the model (gen_KragEtal15_base) to 
generate synthetic sequences of recall events, in the variable 
seq_base.  Note that seq_base will have the same layout as the observed 
data.recalls sequences.  We imagine that these recall sequences all 
came from one “model” subject, and create a dummy model_subj vector to 
indicate that for the analysis functions.  To observe how this 
generated data exhibit the standard free-recall phenomena, we again use 
summary_plots to examine the SPC, PFR, lag-CRP, and Stop Probability, 
just as we did with the observed behavioral data.  Tweaking various 
model parameters and rerunning this analysis will allow you to see how 
various parameters affect the shape of these curves. 
 
 
Just as we can examine how individual parameter values influence these 
summary measures, we can somewhat examine how synthetic “neural” that 
affects the value of a parameter influence expected behavior as well. 
 
  
% Generative simulation 2: Set neural signal to be constant and 
% high (+1) for every recall event.  Generate 10x observed trials. 
fstruct.param_info = param_info_joint; 
fstruct.neural_mat = 1 * ones(size(neural_mat_joint)); 
fstruct.n_rep = 10; 
 
Once again, we set the necessary param_info_joint to interpret the 
values in param_vec_joint, and we set the model for 10 repetitions of 
trials.  Additionally, we create a matrix of synthetic neural data 
where the neural measure is “high” (equal to 1) for each possible 
recall event.  We can then observe how we expect how allowing this high 
neural signal to affect temporal reinstatement and the stopping 
mechanism will be reflected in the expected behavior. 
 
  
seq_high = gen_KragEtal15_joint(param_vec_joint, fstruct); 
  
figure(3) 
model_subj = ones(size(seq_high,1),1); 
summary_plots(seq_high, model_subj, list_length) 
suptitle('High Neural Signal') 
 
We generate the synthetic recall sequences according to the model 
(here, called by gen_KragEtal15_joint) and examine the dependent 
measures under the model.  Specifically, we will visually be able to 
observe the differences when compared with a model in which neural 
signal is “low” (-1) for all recall events. 
 



 
% Generative simulation 3: Set neural signal to be constant and 
% low (-1) for every recall event.  Generate 10x observed trials. 
fstruct.param_info = param_info_joint; 
fstruct.neural_mat = -1 * ones(size(neural_mat_joint)); 
fstruct.n_rep = 10; 
 
We set the model up as before, but this time we set the neural signal 
to “low” (-1) for all recall events. 
 
 
seq_low = gen_KragEtal15(param_vec_joint, fstruct); 
  
figure(4) 
model_subj = ones(size(seq_low,1),1); 
summary_plots(seq_low, model_subj, list_length) 
suptitle('Low Neural Signal') 
  
After generating the synthetic recall sequences for this “low-signal” 
model, we can observe how the expected model behavior differs from the 
“high-signal” model.  Notice that when neural signal is used to adjust 
model parameters within the model’s execution, high neural signal 
results in a sharper lag-CRP, indicating a higher degree of temporal 
organization.  This is to be expected with a higher degree of temporal 
reinstatement, as more effectively reinstated contextual states will 
provide good cues for neighboring study items during recall. 
 
Similarly, we can see the effect of allowing the neural signal to 
influence the value of the stopping parameter.  Here, a higher neural 
signal corresponds to a lower rate at which stop probability rises over 
output position, as compared with a model with low neural signal for 
each recall event. 
 
While these “all-high” or “all-low” neural models are seemingly heavy-
handed, these brief demonstrations reflect similar results of similar 
more-extensive analyses performed on neural signals at individual 
recall events (Kragel et al., 2015, see Fig. 5).  By extending these 
analysis techniques to examining neural signals at individual events, 
the modeling framework can be utilized to better understand which 
neural signals help specific model mechanisms better explain patterns 
of observed behavior. 


